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Outline
• Voice and language technologies: history, examples

and technological challenges

• Short intro to ASR: modeling, architecture, analytics

• Language prediction (aka modeling)

• Natural Language Understanding

• Supervised learning approaches: training & annotation issues

• Semi-supervised learning approaches

• Parsers & hybrid models, multilingual models

• Client-server architectures, dialog & semantic equations

• Human interaction with voice & language technologies

• Semantic web-search
• Disclosure



3 IJCAI 2015 Tutorial

Most applications that translate some signal into text employ a
Bayesian approach:

Deployed language technologies

• Speech recognition

• Handwriting recognition

• Spelling correction

• Optical character recognition

• Machine translation

• Word/sentence auto completion

Applications
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Technologies based on voice input

• Technologies that use spoken input for requesting
information, web navigation or command execution
– DA systems: Nuance (bNuance+PhoneticSystems), BBN/Nortel,

TellMe/Microsoft, Jingle, Google, AT&T, IBM (mid 1990s)
– Dictation/speech to text systems: Dragon (mid1990s)
– TV close captioning BBN/NHK (early 2000s)
– Automated attendant & Call routing: AT&T, BBN, Nuance, IBM (early

2000s)
– Form-filling directed dialog (flight reservations) (early 2000s)
– Personal assistants/Full web search: Siri/Apple, Dragon Go, Google

Voice, Vlingo/SVoice, Microsoft Cortana (from 2008)
– Many dedicated systems:

– TV control + music/video management: DragonTV, Xbox one
– Online banking & Stock price search
– Product reviews & FAQ search

– Medical fact extraction from medical reports
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Technologies based on voice input: history

• Architecture: Speech recognizer + NLU + Dialog manager
– Older systems: centralized, deployed in the customer’s processing centers

– New systems: client-server, server deployed in the manufacturer’s
processing center, client app on user’s (mobile) device

• NLU approaches:
– Handwritten grammar rules (top-down): STUDENT, ELIZA

– Context independent grammars from training text: Tina (MIT)

– Supervised text classification

– Context-dependent parsing

– Hybrid

• DARPA programs:
– ATIS (Airline Travel Information System):1990-1994
– Hub4 (Broadcast News LVCSR): 1995-1999
– EARS (Broadcast News + Conversational LVCSR): 2002-2005
– Gale (Speech to speech translation): 2005-2010
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Comparing voice & language input

• Y. Wang, D. Yu, Y. Ju & A. Acero: “An introduction to voice
search”, IEEE Signal processing magazine, May 2008

Query
naturalness

Input space Semantic
resolution

Semantic
space

DA Low Large Low Small

Call routing High Medium Low Small

Directed dialog Low Small Low Small

Mixed-initiative
dialog

Low-Medium Small High Small

Voice search Medium-High Large High Large

User input utterances
Target semantic

representation
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Technological challenges

• Speech recognition: noise, very large vocabulary/OOVs,
pronunciations
– Noise: Environment noise or channel noise
– Pronunciation: many foreign names, pronounced differently than in the

native language
– Speaker adaptation in most modern systems

• NLU: large semantic space, linguistic variation,
recognition errors
– The semantic entity distribution is skewed
– Semantic entities come from noisy databases
– Recognition errors: approximate matching
– Hard to come up with a unified confidence measure in mixed

systems
– People may not use the “official” name of a concept

– Generative methods: Generate possible ways of asking
– Accepting methods: Incomplete parsing + guessing rules (users

voluntarily provide category information “music by ****”)



8 IJCAI 2015 Tutorial

Technological challenges

•Dialog management
– Dialog turn dependent LM/NLU (tuned to the expected

information type)
– Explicit vs Implicit DMs

•Disambiguation: By additional cues like Location

•Tuning/Feedback: Is it possible to automatically
learn from the user actions?
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Brief Introduction to Automated
Speech Recognition

ASRs Bayesian approach:
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Acoustic modeling (classical approach)

[&][th][e][d][o][g][&]

Signal pattern Label string

(&)/th/(e) (th)/e/(d) (e)/d/(o) (d)/o/(g) (o)/g/(&)
time

Model

5-state left-to-right hidden Markov model with GMM state distribution
– Transition matrices
– Probability density function (pdf) for each state (mean vectors, covariance matrices and mixture weights for gaussian

mixture models)

Model
parameters

• The randomness in the state transitions accounts for time stretching in the
phoneme: short, long, hurried pronunciations

• The randomness in the observations accounts for the variability in pronunciations
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Training issues: acoustic models

• Training data is NOT manually segmented into phonemes

the dog [&][th][e][d][o][g][&]

• The co-articulation effect: phonemes depend on their
neighbors (context) phoneme models in a triphone context
(“triphone models”) ~(503) models each with a Gaussian
mixture and state transition matrix

• Data available not sufficient to estimate all parameters ~(107)

share them among the triphone models: tying
– Phoneme Tied Mixtures (PTM): All triphone models belonging to the same phoneme

share the same Gaussian means and variances, but not mixture weights. This reduces
the number of mixtures from ~100,000 to ~50 (each with 256 Gaussians, for example))

– State-Clustered Tied Mixtures (SCTM): Clusters of states (may be from different
phonemes) share the same Gaussian means and variances (but not the weights). The
number of mixtures is reduced to ~2000 (each with 40 Gaussians)

– Tied Mixtures: All the triphones share the same Gaussian means and variances (1
mixture with about 10,000 Gaussians)

– Tied Mixture Weights
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Large vocabulary continuous speech
recognition: the BBN EARS system

Feature
extractor

Speech segmentation

(silence detection)

Acoustic

features

Speech

segments

PTM models

SCTM nonx models

SCTM x-word models

Model

adaptation

FW search

(recognition)

BW search

(recognition)

Partial

hypotheses

N-best list/

lattice

Acoustic scoring

Language scoring

Score optimizationAdapted PTM models

FW 2-gram lang. model Adapted SCTM nonx models

BW 3-gram language model

Adapted SCTM x-word models

BW 4-gram language model

Final

hypotheses

Adapted recognition

Feature

adaptation

FW search

(recognition)

BW search

(recognition)

Partial

hypotheses

N-best list/

lattice

Acoustic scoring

Language scoring

Score optimization

Acoustic PTM models

FW 2-gram language model

Acoustic SCTM nonx models

BW 3-gram language model

Acoustic SCTM x-word models

BW 4-gram language model

Final

hypotheses

Un-adapted recognition

System

combination
Results from a different system
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• Word Error Rate (WER): quality of the output produced by a
speech recognizer
– Measured against a human-made ground truth reference of the audio input

• Error types
– Word substitutions

– Word deletions

– Word insertions

• WER varies a lot across the population

• Smaller for native people, men

• Report percentage of the population for which WER < X%

ASR Analytics

refwords

InsDelSub
WER

#



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The DARPA EARS program

• EARS: Effective, Affordable, Reusable, Speech-to-Text
– DARPA program, funded sites: BBN/LIMSI, SRI, Univ. of Cambridge

• Objective:

EARS

Multiple Applications

WORDS +
METADATA

Broadcasts

Conversations

– Humans to read and
understand easily

– Machines to detect, extract,
summarize, translate

Accurate enough for

• Program goals and evaluations
– Speech-to-Text (STT) 27.5% reduction in word error rate per year

– Two Conditions: Conversational Telephone Speech (CTS), Broadcast News (BN)

– Three Languages: English, Arabic, Chinese

• Tests
– Annual new test data

– Progress tests (same every year)
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EARS program performance targets

Extractable,
Summarizable,
Translatable

Conversations

2002 2003 2004 2005 2006 2007

Broadcasts
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Error Analysis (broadcast news speech)

1. Substitution of short or/and similar words: 20-25%

2. Errors generated by proper names (persons or locations): 15%

airlines with A background OF thatairlines with THE background TO that

americans who STRUGGLED to understandamericans who STRUGGLE to understand

to understand THE israelis and palestiniansto understand *** israelis and palestinians

that accompanied them THAT was quite anthat accompanied them IT was quite an

Ref Hyp

• The correct word is usually in the hypotheses list.

• However, the LM is of little help in such cases, it is difficult even for a human
to guess the “right” choice based on a short history

• Very costly: each mis-recognized name word generates 1.5-2 errors. Longer
names are split into more words (BRASWELL BROWN AS WELL)

• Some (<1/4) of them are OOV (IVANISEVITCH). OOV rate is only 0.35%

• Many due to spelling differences (HANSSEN HANSEN)

• For most of them we do not have sufficient LM training.
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Error Analysis (conversational speech)

1. Errors due to disfluences (mispronunciations, bad grammar,
hesitations, fillers, edits, etc)

2. High deletion rate (ratio deletions/insertions = 2.5:1, for BN it is only 1.5:1)

• In most cases, the words are largely inaudible – should have been marked as un-intelligible

Ref: kind of strange for me to (%hesitation) YOU KNOW all my … and EVERY ONE IS HAVING babies
Hyp: kind of strange for me to *** **** all my … and ***** *** ** ****** babies

and maybe AT a lower stage of development maybe AT a higher stage OF DEVELOPMENT THAN we are
and maybe ** a lower stage of development maybe ** a higher stage ** *********** THAT we are

Ref: is it is too much OF AN EASY OUT well IF things do not work
Hyp: is it is too much AND HE IS YEAH well ** things do not work

she had a **** HAUNTED HOUSE (%hesitation) there was a BELL that would ***** RING AT a certain
she had a HARD TO HAVE %hesitation there was a BELLOW that would BRING IT TO a certain

3. Long words which are misrecognized are split into several words

TELL US THE alabama**** ** TALASSEE alabama

what ARE YOU IN OVER a *** CAR from PROBLEM BUSESwhat * * * * a UNIVERSAL CARD from * BLOCKBUSTER'S

a big CAMPUS THEATER NOT likea big ****** ******* AMPITHEATER like

you know MY SWEET FOR HIMyou know ** ***** *** MINESWEEPER
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What is the ground truth in speech recognition?

Tr1: and UH so THEN WHEN I you know i finally GET A CHANCE to go out with my husband it's
Tr2: and UM so THE ONLY TH- you know i finally *** DID ATTEMPT to go out with my husband it's

• Manual transcriptions differ among people
– Some of the error may be carelessness
– Much of the speech is not audible
– Much of it is true ambiguity

• CTS Eval03 was carefully transcribed by 6 different teams
– There is an average 6% disagreement between any pairs of transcripts
– Many times the transcribers produce “what the person should have said”

• We cannot expect to achieve WERs lower than the
differences among transcribers
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Most applications that translate some signal into text employ a
Bayesian approach:

Language prediction (aka modeling)

)sentence()sentence|signal(maxarg
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If sentence = w1 w2 … wn and a two-word history is considered
sufficient to predict the next word, then
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Statistical Language Modeling

Signal pattern: this is B B C

P(S) = P(C|B,B,is,this)*P(B|B,is,this)* P(B|is,this)*P(is|this)* P(this)

Objects (classes): 100K English words

Assumption: history matters only up to a certain point

= P(C|B,B)*P(B|B,is)* P(B|is,this)*P(is|this)* P(this)

There are 1015 probabilities to estimate !
• The art of language modeling is dealing with sparse data, we usually do not have more than a few billion

words of training so most word t-uples are unseen in training but we have to assign them probabilities

• Use discounting: set aside a part of the probability mass for the unseen target words

Training for
history (B,B):

B B C, B B N

How likely is
B B B?

P(C|B,B)

P(N|B,B)
P(N|B,B)

P(C|B,B)

Probability mass
set aside for unseen

targets
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Approximating P(wi | wi-1 ,wi-2)

• Even with a large amount of training (1+ billion words) some 10%(BS) –
20%(CS) of triples (wi, wi-1, wi-2) are not seen in training so their maximum
likelihood probability is 0

• Apply interpolated discounting: set aside a part of the probability mass for
unseen word sequences and recursively interpolate longer history
probabilities with shorter history probabilities :

• To maintain a probability model we need it to sum to 1 over wi :

)w|P(w*)w,w()w,w,(w*)w,w|(wP 1-ii2-i1-i2-i1-ii2-i1-iiML  

)w,w,(w*)w,w,(w-1)w,w(
wi

2-i1-ii2-i1-ii2-i1-i   MLP

Witten-Bell Knesser-Ney

)w,w|(.)w,w|(.U*c

)w,w|(.U*c

2-i1-i2-i1-i

2-i1-i

Totalniq

niq




)w,w|(.)w,w|(.U*c

)w,w|(.

2-i1-i2-i1-i

2-i1-i

Totalniq
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


)w,w|w(
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-1

2-i1-ii

2-i1-ii
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2-i1-ii
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How do we use a language model?

WSJ
NYT
LAT
CNN
PBS

1-gram table 2-gram table 3-gram table

w1 w2 w3 P

P(w3 | w2 ,w1)

w1 w2 P 

P(w2 | w1)

),( 12 ww

w1 P 

)( 1w

P(w1) …

LM training

P(this is B B C) = P(this) * P(is|this) * P(B|is,this) * P(B|B,is) * P(C|B,B)

• What happens with n-grams for which we do not have LM training?

• If we have not seen (C B B) in training then:

)|(*),( BCPBB )|( BCP

Seen history (B,B)?

),|( BBCP
Y N

• There is over a order of magnitude difference between a 3-gram
probability and a 2-gram probability
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Training a language model: size issues

• When we train an n-gram LM on a large corpus, most of the
observed n-grams only occur a small number of times. There are
700M distinct 4-grams in a 1.5 billion-word corpus, more than half
are only seen once!

• Due to computational constraints the singleton (seen only once) n-
grams are usually discarded

• Questions:
– Does the fact that an n-gram occurred one time provide useful

information (is it statistically significant) ?
– Is it practical to use a really large LM?

• The probability that a word is recognized is affected significantly by
whether the corresponding n-gram is in the LM (measured by the
“hit rate”), because if it is not, the LM probability (from backing off)
is significantly lower.
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Language model coverage

• English broadcast news test, (H4Dev03)

• Witten-Bell discounting with lower order smoothing

• Cutoff of 6 for trigram loses 0.5% absolute

• 4-gram with cuttoff of 6 gains 0.5%

• 4-gram cutoff of 6 loses 0.3%

11.8139[61%,84%][710M,305M][0, 0]4

12.1208[49%,76%][40M, 36M][6, 6]4

12.1164[0, 84%][0, 305M][inf, 0]3

12.6201[0, 76%][0, 36M][inf, 6]3

WERPerplexHit Rates

[4g,3g]

LM size

[4g, 3g]

Cutoffs

[4g, 3g]

LM

Order
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Mixing data from multiple sources

• Manual transcriptions of audio data
– In-domain (current application)
– Vertical domain (same industry)
– General conversational data

• Automatic transcriptions of (in-domain) audio data

• Web-crawled text data

• Entries in large databases (census database)

• Human knowledge present in legacy hand built grammars

Mixing strategy: count or probability-based LM interpolation
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Mining corpora for similar language patterns

• When we don’t have enough LM training data (CS: 5M words) we try to
compensate by using out-of-domain (News: 1B words) data

• How do we know the out-of-domain data might be useful? We know it is not useful if it
does not improve the overall “resemblance” of the training data to the test data (word t-
uples present in both = hit rate)

• If the out-of-domain corpus is too large it is impractical to use or even compute a
language model from all the data

• How do we select a News subset which is most relevant to (resembles best) the CS
domain?

• News Mining: Use only those News sentences which contain a certain amount of word t-
uples seen in the CS data

AND I I'M A BROADCAST JOURNALIST AND SO I FEEL LIKE ONE DAY I PROBABLY WILL
AND SO I I GUESS I'M I'M PRETTY EMOTIONAL ABOUT CRIME THINGS LIKE THAT NOW
YOU KNOW A LOT OF THINGS THAT HAPPEN THAT PEOPLE DON'T SEE

YOU DON'T SEE ANYTHING LIKE THAT NOW
I WOULDN'T DARE DO ANYTHING LIKE THAT NOW
YOU KNOW A LOT OF PEOPLE NEED PROFESSIONAL HELP
A LOT OF PEOPLE ARE BEING HURT BY ECONOMIC CHANGES
AND THEN I THINK EVENTUALLY I PROBABLY WILL

YOU CAN'T HOPE TO PROTECT INTELLECTUAL PROPERTY WITHOUT A TECHNOLOGY COMPONENT
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Discussion

• Even a single observed token of an n-gram tells you that it
is possible.
– It is important to know the difference between n-grams that are unobserved

because they are rare and those that are impossible. [If we could really know this,
we would have much better results.]

• The gain from keeping all n-grams is significant (0.5% for
3-grams, 0.3% for 4-grams).

• When using Knesser-Ney discounting the degradation is
smaller, but there is still a loss

• However, when little training data is available the
discounting method is very important and Knesser-Ney
gives the best results
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Natural Language Understanding

• Extracting meaning & information/metadata from text

• Applications
– Personal assistants: command/transactions execution
– Information retrieval / question answering

– Direct questions: “who directed titanic”
– Indirect questions: “find other movies by the director of titanic”

– Question understanding != Question answering
– Extracting structured information from unstructured text (eg, EHR)
– Sentiment analysis
– Automated recruiting (matching resumes to positions)

• Historical approaches
– Knowledge / rule based
– Statistical learning

– Generative models
– Discriminative models
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Supervised learning one-shot NLU architecture

• Top-down semantic modeling schema and data processing

• Domain/Intent classifiers are typically SVMs based on n-gram features

• One intent classifier for each domain, one slot extractor for each
(domain,intent)

ASR
Domain

classifier

Slot
normalizer

Intent
labels

DM IM SM

Manual
Transcriptions

Domain
labels

Slot
labels

NLU Server
Intent

classifier
Slot

extractor
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Directory assistance systems

• Task: automatically provide phone number/address for business &
residential listings

ASR
Slot

extractor Threshold
Joint acoustic-

language confidence

Rescoring

Listing
DatabaseAudio

LM SM CM

Manual
Transcriptions

Reject

Accept

Offline training

Online recognition

• State/large metropolitan area specific
– Listing database contains (popularity) priors for businesses
– Evaluation criterion: Automation rate
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Call routing systems

ASR
Intent

classifier Threshold
Joint acoustic-

language confidence

Rescoring

Intent
labelsAudio

LM IM CM

Manual
Transcriptions

Reject

Accept

• Task: automatically route customer calls to the appropriate agent

Offline training

Online recognition

• Offline Learning
– The application audio is manually transcribed and labeled before the

system is deployed
– The system may be retrained during tuning procedures
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Design & training challenges

1. Requires large amounts of data annotation
– Manual transcribing/labeling is costly, time consuming and tedious
– Changes in the app spec/annotation schema requires data relabeling

2. Labeled data is usually inconsistent
– Annotation schema may generate annotator confusion
– Human annotators may be careless or cheating
– Semantic labeling is very hard

3. Hard to explain & fix errors

4. Large number of models
– Computationally intensive
– High memory requirements

5. Semantic modeling schema is NOT based on data
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Semi-supervised training

• Online Learning
– The system operates in reduced automation mode while recording

the incoming audio and operator actions
– The system automatically transcribes audio and adapts its models

whenever a given amount of new data has been collected

ASR
Intent

classifier Threshold
Joint A+L

confidence

Rescoring

Intent
labels

Adapted
IM

Application independent
confidence engine

ASR

Bootstrapped
LM

Automated
Transcriptions

Adapted
LM
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Semi-supervised training data selection

• Active Learning
– The system queries a large query database for examples similar to

the current task

ASR
Intent

classifier Threshold
Joint A+L

confidence

Rescoring

Intent
labels

Adapted
IM

ASR

Bootstrapped
LM

Automated
Transcriptions

Adapted
LM

Intent database

Semantic query selection

Application independent
confidence engine
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Semantically-based query selection

• Label the database sentences using all (well trained) intent
classifiers available and produce a joint [intent, confidence]
– “speak spanish”: [SpanishApp/0.97; OOV/1; Unknown/0.96]

• Label the query sentences using all classifiers available
– “espanol”: [SpanishApp/1; OOV/1; OOV/1]

• For each query and database sentence, compute the posterior
likelihood that they are assigned the same joint intent

• For each query, return the database sentences with the
highest likelihood
– “espanol”: “is there anyone that talks in spanish”/0.00019677; “do you have

someone who speaks spanish there”/0.00019574; “excuse me somebody
speaks spanish”/0.0001909
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Semantic ambiguity and confusion
• Confusable classes increase annotator inconsistency

BillExplanationdue date

AccountBalancepayment due date

DisconnectDisi'd like to pay my bill later than the due date

DisconnectDisneed r_m_a number

Salesi need a r_m_a number to return my modem

BillExplanationi'd like to talk to someone about my bill

BillingAndPaymentsDisneed to talk to someone about my bill

DisconnectDisreturn d_s_l modem

InternetDisd_s_l modem return

Semantic label (manual)Customer request
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Semantic ambiguity and confusion

• Personal assistant: Insert a new calendar event

make an appointment with batman tomorrow
make an appointment with batman for tomorrow
create new appointment for wednesday at 3 pm
add an appointment at in four hours tuesday with james
add appointment for dentist at 7 pm on march 3rd

from 1 pm tomorrow i have a doctor's appointment with mike
i'm leaving for a doctor's appointment today at 11 am
set doctor appointment for april 12 2012 at 9 am
tomorrow doctor's appointment
susan the 16th' appointment 11 am

Legend: Title Invitee Date Time DontCare
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Semantic ambiguity and confusion

open charlotte<absolute_location> restaurant<travel_header> page

show restaurants in mexico city<restaurant_location>

find best<restaurant_described_as> restaurants and hotels in rome italy
<restaurant_location>

can you tell me more about the hotels<hotel_type> and restaurants in manila
<hotel_location>

i am looking for hotel and restaurant<travel_header> information for manila
<absolute_location>

display food and hotels in miami florida<restaurant_location>

search for a starbucks<restaurant_name> near me<restaurant_near_ref>

find me a starbucks<restaurant_name> nearby<restaurant_near>

search nearby<local_biz_near> walmart<local_biz_business_name>

intersections<traffic_near> closest to evans<traffic_near> walmart <traffic_near>

Personal assistant: Places domain
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Semantic clustering

• Automatically suggest intent labels
– Could one decrease the manual labeling time while

increasing annotator consistency?

Suggest
intent labels

Hierarchical semantic
clustering

ASR

Bootstrapped
LM

Automated
Transcriptions

Auto-transcription
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Voice search language understanding

• Query types
– Navigational: reaching a website explicitly requested (e.g. “go to

facebook”) or a certain state in the dialog flow (e.g. “go back” or ”cancel”),
– Informational: finding information on the web (e.g. “capital grille restaurant

reviews”)
– Transactional: conducting a transaction on a website (e.g. “make a

reservation at capital grille”)

• Short queries with high semantic resolution, large input
space, increasingly in a natural language

• Manual annotations for supervised classifiers are very
costly
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Voice-based personal assistant
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Voice-based personal assistant
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Semantic properties of voice queries

• Most queries contain at least one name entity

• Location

• Person

• Business

• Media (Song/Album/Movie/Game/Show)

• Flat semantic structure: concatenation of an intent and
one or more name entities

• Intents: Search, Play, Buy, Call, Reserve

Visualization strategy: Replace name entities / intent
fragments by their semantic type

• Compressed query = query template
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Semi-supervised query mining pipeline

• Discover the semantic structure (query templates) using approximate string matching

• Assign meaning (domain/intent/etc) to each query template

• Generate parsing rules and classifier training samples then train NLU classification models

Classifier
training

Parsing
model

NLU
model

Approximate
matching

Knowledge database Query
templates

Location Song Business

Assign
semantics

<Restaurant><Location>

<Near><Business>
<Weather><ZipCode>

find_FoodEstablishment

find_LocalBusiness

check_weather

<SportsTeam><SportsInfo> get_scores

wendy’s in boston

nearest kmart

weather in 02155

boston bruins scores

details on call of duty <Info><Game> show-details

Query Query template Query intent

ASR

Restaurant

Local Business

Weather

Sports

Games

Domain
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Query template extraction

• Approximate string matching of gazetteer/dictionary items
to the data
“wal-mart frankfort kentucky”,
“walmart in daphne alabama”
“apple store austin texas”

• A large number of specific queries can be abstracted into
one query template
– <BUSINESS> <LOCATION> covers 22818 queries

• The compression rate depends on:
– The semantic domain
– The semantic entity list
– The contextual phrases which are modeled
– The matching algorithm

<BUSINESS> <LOCATION>.
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Model training

• Query templates ordered decreasingly by their coverage

• Intent/domain annotation of the most frequent templates
– <RESTAURANT> <NEAR> <LOCATION  find_FoodEstablisment

• Each annotated query template automatically translated into a
parsing rule

• All queries covered by the annotated templates can be used
as training for a statistical intent/domain classifier

• Desired behavior not covered by data is implemented as
handwritten parsing rules
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Parsing-based one-shot NLU architecture

• Bottom-up data processing

• Parsing models are context-dependent grammars based on
semantic/name entity dictionaries

• Joint (Domain, Intent) classifier using semantic entity features

• Uses name entity dictionaries rather than manually annotated queries

ASR

Semantic
parsing models

(Domain, Intent)
model

NLU Server
(Domain, Intent)

classifier

Semantic slot
extractor &normalizer
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Using multiple slot extractors and classifiers

• Slot extractors can be different parsers or even stochastic sequential
annotators (e.g. current CRF,IBM Sire)

• Segmentation optimization: minimize (#semantic entities, #non-covered words)

• Deterministic classifier: Hash table or Nearest Neighbor

• Deterministic processing path needed for fixing the errors

ASR

Semantic
parsing models

(Domain, Intent)
models

NLU Server

Deterministic
(Domain, Intent)

classifier

Semantic slot
extractor &normalizer

Semantic slot
extractor &normalizer

Semantic slot
extractor &normalizer

Segmentation
optimization

Stochastic
(Domain, Intent)

classifier

Accept

Reject
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Comparison with CRF annotation on the Calling domain
Methodology

• Mapping slots/intents into CRF’s annotation schema = 25h

• Template calibration (removing consistent annotation differences) = 20h

<destination_phone>home</destination_phone> phone

<destination_phone>home phone</destination_phone>

• Sort training templates by coverage/’confidence’ and downgrade the
ones with inconsistent manual annotation

• Compute results on the dev/test sets for increasing coverage levels

• Training set: 9248 sentences

• Concept discovery + grammar building = 20h (covers 2/3 traffic)

• 60 grammar rules

• Perl script top-down parser (handles free text) = 100 lines

• Simple rule classifier [Parse => Intent] = 40 lines
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Coverage of the Dev/Test sets by the training templates

• Top 100 training templates cover roughly 2/3 of the traffic

• Fixing the training templates decreases coverage by <5% abs on the
head of the distribution

• Acc (TrainCov = X) >= Acc(TestCov = X%) >= Acc (TrainCov = X+5%)
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Difference in performance Grammar - CRF

• On the top 15% of the traffic both methods give identical results

• On the next 50% of the traffic grammar slightly more accurate

• On the 1/3 traffic tail CRF is more accurate

• A lot more annotation inconsistencies on complex templates
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Client server NLU + dialog architecture

Mobile client

NLU Server

ASR
Domain

classifier

Slot
normalizer

Intent
labels

DM IM SM

Manual
Transcriptions

Domain
labels

Slot
labels

Intent
classifier

Slot
extractor

LM

Dialog manager

Voice
synthesizer

Transaction
execution

Logging
module

Acoustic
waves

AM

Knowledge
database

Position
module
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Client server NLU + dialog
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NLU + Question Answering + Dialog architecture

NLU Server

Query

Intent
tableModels Annotator

SemEq
table

Intent classifier

Action
manager

Knowledge
database

Semantic slot
extractor &
normalizer

SemEq solverSemantic
Template

SemEq?

Action
table

Dialog
manager

DM
table

Act?

Prompt back
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NLU + Question Answering + Dialog
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NLU + Question Answering + Dialog
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NLU + Question Answering + Dialog
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Multilingual query understanding architecture

Multilingual
annotator

Intent
tableSemantic

lexicons

Company
name

Query

en-us

fr-fr

de-de

Monolingual
annotators

Stock
ticker

Multilingual
wrapper

es-es

Semantic
annotation

Semantic
template

Intent +
slots

• Monolingual annotators can be combined into a Multilingual
annotator
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Multilingual query understanding
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Bottom-up vs. top down parsing

• Bottom-up parsing

watch family history season nine on netflix

• Top-down parsing

Handwritten regexp “Stream *{1,3} ShowContext URL*”

watch family history season nine on netflix

• Preferred top-down parse since it only misses two words

Legend: Stream ShowTitle Filler ShowContext URL

• Bottom-up parsing computes the semantic structure from the query

• Top-down parsing checks whether the query is covered by an
imposed semantic structure (including guessed entities)
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Context-based semantic disambiguation

• Some entities can be labeled along with contextual phrases
– “red sox news” vs. “obama news”
– Contextual phrases can be labeled un-ambiguosly
– Increase both coverage and accuracy

• Sometimes both the main entity and the contextual phrase are
ambiguous
– “Alice in wonderland”: Book title, Movie, Song, Album
– “3-D” is also ambiguous
– “Alice in wonderland 3-D”: Not ambiguous anymore

• Ambiguous entities need to be disambiguated by contextual
phrases

• Many ambiguous entity names in content databases
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Increasing parser coverage

• Increasing the query-to-template compression rate
– Making matching algorithms insensitive to “-“ vs “ “ vs “” and “’s” vs “s” vs “” (

“king’s speech”,” kings speech”,” king speech” considered the same)
– Modeling contextual phrases: “avatar movie in 3-d”

• Increasing the number of labeled query templates
– Automatic labeling is possible to some extent since some entities and/or entity

ordering do not contribute to the intent assignment decision
– <BUSINESS> <NEAR>

<Find> <BUSINESS> <NEAR>

<Find> <NEAR> < BUSINESS >

– The number of templates manually labeled is much smaller if using only
reduced templates

• Increasing the number of semantic entities modeled

find_LocalBusiness
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Issues with automated entity updates

1. Name confusion
– “Moby Dick”
– It is hard to compute confusability based solely on the field data.

2. Differences between the listing names and the actual name
requests
– “On the border mexican grill & cantina” => “on the border”, “on the

border restaurant”
– “Sears Roebuck and Co” => “sears”, “sears store”

3. Differences between what is spoken and what is recognized
– “fry’s electronics” => “fries electronics” “toysRus” => “toys are us”
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Issues with automated concept name updates

4. Dependence on the final website/search engine
– Yelp chokes on “cvs pharmacy”/”bertucci’s pizzeria”; expects just

“cvs”/”bertucci’s”
– IMDB needs the exact movie ID as in its database in order to go directly

to the page

• For regular automated updates items 2-4 are hard to
anticipate
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Advantages of including a parsing-based
deterministic component

• Trained with little manually annotated data
– No manual transcription or semantic labeling is necessary
– The classifier training set is bootstrapped from the fully abstracted queries

• Flexible to:
– Adding coverage for semantic entities not seen in the data
– Name guessing
– Changing the granularity of the semantic interpretation
– Closely controlling system behavior

• Disadvantages
– Handwritten rules more difficult to maintain
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User behavior analysis

• Most people repeat the query than correct the recognition output
– Some users eventually get correct recognition after a few trials
– Some users try many times and don’t get it right due to OOVs

– If not correct after the 5th trial, the likelihood of eventually getting it right < 5%
– Including repeated queries highly biases system stats (e.g. OOV)

• Users would rather type queries longer than 7 words: “Say What? Why users
choose to speak their web queries”, M. Kamvar, D. Beeferman (Google)
– Difficult to fluently voice a large amount of info in single query

• User gaming / testing
– Non-native speakers passing the phone to other (native) speakers
– Repeated queries on misrecognitions but correct document retrieved
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• Analyze the factors that are correlated with a decision to speak a web
search query rather than type it.
– Experiments using Google Mobile Application on Blackberry
– 75K users, 1M+ queries using both typing & voice search

• Keyboard type: P(V|FK) = .346 P(V|CK) = .416

• Query length: more likely to speak a query shorter than 6 words than a
longer query
– Possibly determined by the extent to which users need to remember speech

queries in an “articulatory buffer” prior to speaking
– In our data: Longer queries are 10-20x less frequent than 1-3 word queries

and many not really used for search

• Query popularity/frequency (using completion suggestion feature): Not
correlated

“Say What? Why users choose to speak their web
queries”, M. Kamvar, D. Beeferman (Google)
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• Query semantics: DA queries more likely to be spoken
– Heavily uses “local/near” search (using GPS location)

• Spoken queries trigger “quick results” (no need to click) 12%
more often than typed queries
– Users speak their queries in situations where the entire search experience will

be “hands-free”
– Half of Maps queries are spoken

• Factor proposed but not analyzed:
– Users’ situational context: their primary activity at the time of querying
– More likely to use voice when driving/walking than when riding subway/bus or in

a meeting
– Logging user’s velocity
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How errors are perceived by humans

• If the feature space of a ML system is “humanly understandable” then
some errors may look very embarrassing and there will be high pressure
to guarantee they won’t happen again

 “The most humiliating moment in my writing career was referring to Warren Buffett
and Peter Lynch as ‘Buffet and Lunch’ not in a column, but in my book, Your Next
Great Stock. That's because I was too busy and greedy to take a book sabbatical
and instead wrote the thing at night using Dragon software” (“New iPhone Bodes
Well for Speech Stock”, Smart Money magazine)

VS.

“I got another chuckle when I asked to ‘Search for the square root of 155’
and it asked me which address ‘155 Root Ave’ was the one I wanted”
(quote from “Apple's Siri Versus Dragon Go! and Vlingo” review in PC
magazine)
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User ratings for voice search technologies

DGo V 1.1 DGo V 1.2
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Building large scale voice-search systems:
caveats

• Being able to fully fix the semantic specs of the app before
building it is a myth

• Manual labeling of a large amount of individual queries with
high consistency/accuracy, reasonable semantic granularity in
a reasonable amount of time/costs is a myth

• If buggy, the client app may be a strong reason for user
annoyance. Very expensive to recall/update.

• Need to keep full logs of all ASR/NLU intermediate results
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Semantic web-search
• T. Imielinski & A. Signorini: “If you ask nicely, I will answer: Semantic Search and Today’s

Search Engines”, 3rd IEEE International Conference on Semantic Computing (2009)

• Search engines sensitive to the way queries are constructed

• Popular queries with only one right answer are well served
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Semantic web-search

• Search engines remain many times keyword oriented
– Helped by Internet’s redundancy of information and user generated content
– The burden of selecting the right keywords is left to the user

• Distinction between understanding a query and being able to answer it

• Semantic engine: invariant to the way the query is formulated (rephrase)
– Many academic/industrial initiatives to make the web semantic (W3C Semantic Web Activity)

• Metrics to measure ”how semantic” a given search engine is
– Entropy of Search Result Page
– Top-K results overlap
– One-Right-Answer Invariance: the fraction of queries for which the correct answer appears in the result

page

• Query data: 40K automatically generated based on templates (“bio of person”)
– Over-specifying the query (”France the country”): Top choice the same between 10-45% of the time, Top-

5 choice 100% overlap almost never
– Number transliteration (”top 20 cars”): Only 3% of the time top choice is the same
– Rephrasing: 90% of the time the correct answer is eventually retrieved but Top-K results overlap is low
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Semantic web-search
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1. Introduction

Scientists have long dreamed of creating machines humans could interact with by voice. In his most cited

paper published in 1950, Computing machinery and intelligence Turing predicted that “at the end of the

century the use of words and general educated opinion will have altered so much that one will be able

to speak of machines thinking without expecting to be contradicted” [46]. “Thinking machines” involve

multiple capabilities: recognizing the words which are said, understanding their meaning and being able

to produce a meaningful reaction (e.g, answer a question which may imply reasoning in addition to

simply querying a fact database, perform an action/transaction, etc).

Although, after several decades of research, one no longer believes Turing’s prophecy that machines

will be able to converse like humans in the near future, real progress has been made in the voice and

Address for correspondence: Microsoft NERD Center, One Memorial Drive, Cambridge, MA, 02142, USA
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text-based human-machine interaction. From a theoretical viewpoint, modern computational linguistics

started in the late 1950s when Noam Chomsky introduced the theory of generative grammars which

aimed at producing a set of rules that correctly predict which combinations of words form grammatical

sentences [15]. The first practical attempts at natural language understanding by a computer were at

MIT and Stanford in the 1960s: Daniel Bobrow’s STUDENT system which used natural language input

to solve algebra word problems and Joseph Weizenbaum’s ELIZA system that could carry a dialog on

many topics (although it did not have a real understanding of the language)1 .

However, the early systems were only using written text input; it would take two more decades of re-

search until Automatic Speech Recognition (ASR) could allow for voice input. Throughout 1990-2000s,

the Defense Advanced Research Projects Agency (DARPA) in the United States conducted several pro-

grams to advance the state of the art in ASR, spoken dialog and information extraction from automatically

recognized text (ATIS 1990-1994, Hub4 1995-1999, Communicator 1999-2002, Ears 2002-2005, Gale

2005-2010) [52]. These scientific advances have also been sustained by the introduction and exponential

growth of the World Wide Web and by the huge increase in computing power and miniaturization that led

to the today’s proliferation of smartphones.

This paper is a light introduction and survey of some of the deployed natural language systems

and technologies and their historical evolution. We review two fundamental problems involving natural

language: the language prediction problem and the language understanding problem. While describing

in detail all these technologies is beyond our scope, we do comment on some aspects less discussed in the

literature such as language prediction using huge models and semantic labeling using Marcus contextual

grammars.

2. Natural Language Prediction

Language prediction is defined as the ability to predict which words naturally follow a given word se-

quence. It is generally assumed that natural languages are governed by a probability distribution on word

sequences and the language prediction (actually called Statistical Language Modeling) models are trying

to derive a good estimate of this distribution [4].

Language modeling/prediction has started as a part of the Automated Speech Recognition research

effort and is now extensively used in most systems which convert some form of signal into text using a

Bayesian approach:

• Automated Speech Recognition (ASR) for acoustic to text mappings [25]

• Optical Character Recognition (OCR) and Handwriting recognition which map document images

into text [32][38]

• Automated Machine Translation (AMT) which maps text written in one language into text written

in a different language [28]

• Spelling correction systems which map incorrectly spelled text into the correct form [6]

• Word completion and prediction systems (predict following letters in a word or words in a sms/email

message considering context and previous user behavior) [9]

1A detailed historical perspective can be found in [45]
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These systems are all trying to find the text sentence which maximizes the posterior probability

P (Sentence|Signal) which according to Bayes rule can be written as

P (Sentence|Signal) = P (Signal|Sentence) × P (Sentence)/P (Signal) (1)

P (Signal|Sentence) is the underlying signal model based on acoustic, visual, translational, etc cues

while P (Sentence) describes the likelihood of a given sentence in a language.

Since a natural language like English has a lexicon of the order of 106 words, it is not possible

to directly estimate P (Sentence) for all sentences. Early ASR systems have restricted their language

models to the set of sentences appearing in a training set. The drawback was that the system could only

output one of the sentences it had seen in training no matter what the user said. Though the system had

the ability to reject an input (not produce a text output if P (Sentence|Signal) was too low), that was

not very helpful in a practical system that had to deal with unconstrained speech.

Several techniques have been proposed for estimating P (S) for every sentence S = {w1, w2...wm}
(wi are the sentence words in the order they are spoken) [4][40]; currently the most widely used models

are based on decomposing P (w1, w2...wm) into a product of conditional probabilities

P (w1, w2...wm) = P (wm|wm−1...w1)× P (wm−1|wm−2...w1)× P (w1). (2)

Since it was still impractical to directly estimate P (w1, w2, ..., wm) for long word histories, one

assumed that words far away in the history of a target word do not have a large influence. That is, the

word sequence w1, w2, ..., wm behaves like a Markov chain of some order n. Therefore one only needs

to estimate the statistical distributions of n consecutive word sequences called n-grams. According to

these models, the probability of a sentence can be decomposed into a product of conditional n-gram

probabilities. Although counterintuitive, n-gram models take no advantage of the syntactic or semantic

structure of the sentences they model.

However, if we are using the Maximum Likelihood (ML) estimate for

PML(wn|wn−1, ..., w1) = Count(wn, ..., w1)/Count(wn−1, ..., w1) (3)

we are facing the issue of assigning a null probability to those n-grams not seen in the training data. Even

with a training corpus in excess of a few billion words (that’s about the size of all newspaper text pub-

lished in the US in the 1990s) there are still 10-20% valid 3-grams which have not been seen before (last

row of Table 1). To properly handle them, one applies a technique called interpolated discounting (also

called smoothing): set aside a part of the probability mass to account for unseen events and recursively

interpolate longer history probabilities with shorter history probabilities:

P (wi|wi−1, wi−2) = PML(wi|wi−1, wi−2)× α(wi, wi−1, wi−2) + β(wi−1, wi−2)× P (wi|wi−1) (4)

where α and β are called smoothing functions and model the amount of the probability mass that is left

aside for unseen n-grams. To maintain a probability model we need it to sum to 1 over wi:

β(wi−1, wi−2) = 1−
∑

wi

PML(wi|wi−1, wi−2)× α(wi, wi−1, wi−2) (5)
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A large body of language modeling research in the 1990s has focused on finding suitable values for

α and β. Two popular choices are called Witten-Bell [51] and Kneser-Ney [27] discounting:

Witten−Bell discounting Kneser −Ney discounting (6)

Count(.|wi−1, wi−2)

Uniq(.|wi−1, wi−2) + Count(.|wi−1, wi−2)
1−

D(Count(wi|wi−1, wi−2))

Count(wi|wi−1, wi−2)
(7)α =

Uniq(.|wi−1, wi−2)

Uniq(.|wi−1, wi−2) + Count(.|wi−1, wi−2)

∑
wi

D(Count(wi|wi−1, wi−2))

Count(wi|wi−1, wi−2)
(8)β =

Starting in the early 2000s, the proliferation of documents posted on the internet generated a poten-

tially huge LM training set. However, internet scraped text could not be directly used for LM training

since: (i) Almost all of it was out of domain for the systems built at the time2. (ii) The computational

resources (memory and computing speed) were not sufficient to accommodate the huge number of result-

ing n-grams (a 5 billion-word newspaper corpus generates about 0.8B unique 3-grams and 1.5B unique

4-grams).

Multiple directions of research started to address these issues. One of them was LM pruning: some

n-grams considered not too informative were discarded (although after being used in computing global

statistics of the data). The simplest pruning technique is to discard the least frequent, higher-order n-

grams which one may assume are not statistically significant. A more sophisticated technique is entropy

pruning which considers the relative entropy between the original and the pruned model [44]. However,

there appears to be a complex interaction between the pruning method/parameters and the type of dis-

counting used in training the model and that can impact the speech recognition accuracy by as much as

10% [12].

A second research direction was to redesign the LM estimation toolkits and speech recognition

pipelines to accommodate all n-grams seen in the data. It is important to know the difference between

n-grams that are unobserved because they are rare and those that are impossible3. As shown in Ta-

ble 1, keeping one billion 3-4 grams in the LM reduces the Word Error Rate (WER) by about 6% in the

Broadcast News recognition domain [20]. Although received with skepticism in the academia [11], this

direction (along with a distributed data processing framework like Map-Reduce [16]) largely contributed

to the recent success of the Google ASR system [13].

For many speech recognition applications (e.g. conversational speech) sufficient in-domain language

data has not always been available and a solution was found to be the use additional out-of-domain data

(especially internet scraped). Unfortunately, a simple mix of two (different in nature) corpora does not

usually result in a better LM and a successful mixing strategy is often regarded as an art. Therefore, a

third area of research has focused on combining in-domain with out-of-domain data or even bootstrap-

ping an in-domain LM only using out-of-domain data [8][19].

While this is still an active research area we would like to point out two interesting phenomena. The

first is that the colloquial forms of some languages like Arabic and their literary counterparts (e.g. the

Modern Standard Arabic-MSA used in newspaper articles and TV broadcasts) although have the same

2n-gram models are very sensitive to changes in the style, topic or genre of the text on which they are trained (called in-domain

data) [40].
3An analysis of the text currently used in sms messages and twitter postings shows that almost everything is now possible due

to word mispelling, abbreviation and lack of syntactic structure
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Table 1. The effects of LM prunning on the English broadcast news task [20]

.

LMOrder LMsize HitRates WER

[4-grams,3-grams] [4-grams,3-grams]

3 [0, 36M] [0, 76%] 12.6%

3 [0, 305M] [0, 84%] 12.1%

4 [40M, 36M] [49%, 76%] 12.1%

4 [710M, 305M] [61%, 84%] 11.8%

word lexicon, share very few of the higher order n-grams (see Table 2). That means that published texts

and TV transcripts are not effective for training a conversational LM [26].

Table 2. Vocabulary coverage and 3-gram hit rates for LMs based on the Arabic Conversational (150K words),

Broadcast News (300M words) and Conversational + BN data

LM training data Vocabulary coverage 3-gram Hit Rate

Conversational alone 90.6% 20%

Broadcast News 89.5% 4%

Conversational + News 96.6% 21%

The second phenomenon is that even though there may still be a significant accuracy gap between

speech recognition using a fully in-domain LM and that using a bootstrapped LM, the semantics of the

recognized sentence may be far less impacted. That is, one can still figure out the semantic intent of a

sentence even when some of the words are misrecognized [19][47].

Finally, we would like to mention the latest trends in Language Modeling. Discriminative language

models (DLMs) [14] aim at directly optimizing word error rate by rewarding features that appear in

low error hypotheses and penalizing features in misrecognized hypotheses. Since the estimation of dis-

criminative LMs is computationally more intensive than regular n-gram LM one has to use distributed

learning algorithms and supporting parallel computing infrastructure [16]. Neural network language

models embed words in a continuous space in which probability estimation is performed using neural

networks (feed-forward or recurrent, very recent work is based on multiple hidden layer networks called

deep networks [2]). The expectation is that, with proper training of the word embedding, words that

are semantically or gramatically related will be mapped to similar locations in the continuous space.

Because the probability estimates are smooth functions of the continuous word representations, a small

change in the features results in a small change in the probability estimation and NNLM may achieve

better generalization for unseen n-grams.
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3. Natural Language Understanding

3.1. Brief history

During the last couple of decades there has been a tremendous growth of deployed voice driven language

understanding systems; however mostly designed for limited domains. At first, these systems were able

to recognize and interpret (through fixed grammars) some predetermined phrases and named entities like

locations or business names. Most popular were the Directory Assistance (DA) systems built by TellMe,

Phonetic Systems/Nuance, BBN, Jingle, Google, etc.

Later on, the ASR technology started to support constrained digit sequences (dates, phone numbers,

credit card and bank account numbers) and form filling directed dialog systems were designed for tasks

like flight reservation. In such systems, users are asked to provide answers to what the system has asked

for, which often consists of a single piece of semantic information. Directed dialog systems evolved

into mixed-initiative systems where both users and the system can control the dialog flow and which

allowed users to provide more semantic information in a single utterance and in any sequence they

choose. The language understanding task became higher resolution with more semantic entities in need

to be identified, segmented and normalized.

The DARPA Airline Travel Information System (ATIS) project [3] was initiated in the 1990s for

the flight information domain. Users provide some flight attributes like departure and destination cities,

dates, etc. However there were no constraints on how the information could be expressed. That is, users

could say either “I need a flight reservation from Boston to Miami leaving tomorrow and returning in two

weeks” or “Please show me the flight to Miami departing Boston tomorrow”. One can notice that beyond

this freedom of expression there is a clear semantic structure with crisp and unambiguous semantic

entities like Departure/Arrival Cities/Date/Times. These entities, known as “semantic slots” or “frame

elements” are considered to be part of a set of templates (semantic frames) which represent the structure

of the semantic space. The language understanding component in a frame-based system has to choose the

correct semantic frame for an utterance and to segment and normalize the associated semantic slots. For

example, the “Departure Date” slot expressed as the word “tomorrow” has to be normalized to something

like “03/11/2013” in order to be useful for searching a flight database. Most ATIS systems employed

either a statistical classification approach (those coming from the speech processing community) such as

AT&T’s CHRONUS [37] and BBN’s hidden understanding models [30] or a knowledge-based approach

(mostly from the computational linguistics community) such as the MIT’s TINA [42], CMU’s Phoenix

[50], and SRI’s Gemini [17].

TINA [42] is basically a context-free grammar converted to a probabilistic network and implements

a seamless interface between syntax and semantics. The initially bootstrapped context-free grammar is

built from a set of training sentences where each sentence is translated by hand into a list of the rules

invoked to parse it. The rule set is converted to a form that merges common elements on the right-hand

side (RHS) of all rules sharing the same left-hand side (LHS). Elements on the LHS become parent nodes

in a family tree. Through example sentences, they acquire knowledge of who their children are and how

they can interconnect. The injection of domain-dependent semantics is done by replacing the low-level

syntactic non-terminals with semantic non-terminals. For example, the syntactic rule-based derivation

SUBJECT => NOUN PHRASE => ARTICLE NOUN => the Hyatt

is replaced by the semantic derivation [48]

SUBJECT => ARTICLE PLACE => ARTICLE HOTEL => the Hyatt



N. Duta / Natural language understanding and prediction: from formal grammars to large scale machine learning 1007

A main limitation of the knowledge-based systems is that the grammar design process is tedious, slow

and requires a lot of expertise. The semantic space partition into semantic frames may be subjective and

the set of slots for a frame are imposed in a top-down fashion rather than extracted from data. Therefore

some natural language sentences may not be well modeled in this framework.

At the other end of the semantic spectrum are systems which only need to extract the sentence

intent without other semantic entities. An example of such systems are the Call Routers whose goal is

to automatically route a telephone query from a customer to the appropriate set of agents based on a

brief spoken description of the problem. Call routers are nowadays deployed in most of the large call

centers because they reduce queue time and call duration, thus saving money and improving customer

satisfaction by promptly connecting the customer to the right service representative. These systems

remove the constraints on what a user can say but at the expense of limiting the target semantic space.

That is, call routers are specifically built for business verticals (e.g. telecommunication, government,

utility companies) and are only designed to detect the kinds of semantic intents specific to that vertical

(e.g. a telecommunication provider may allow a customer to perform one of several actions: canceling

some service, resolving a billing issue, paying a bill, adding a new telephone line, etc).

Well known call routing systems are the AT&T How may I help you? (HMIHY) [22] and the BBN

Call director [33]. The users are greeted by an open-ended prompt like How May I Help You?, which

encourages them to speak naturally. To find the meaning of a human utterance in a call routing system,

the caller’s speech is first translated into a text string by an ASR system and the text is then fed into a

NLU component called Router. The NLU task is modeled as a statistical classification problem: the text

corresponding to an utterance is assigned to one or more of a set of predefined user intents (routes).

3.2. Current NLU architecture

The explosion of mobile computing power that came with the smartphones allowed the development of

more sophisticated NLU systems that could handle combinations of many user intents along with the

associated named entity extraction. There is now a proliferation of more complex, dialog-based voice

search systems and mobile personal assistants that are configured to understand and perform several tasks

[18]. Each task may have different sets of semantic entities that can be formulated and uttered differently

by different users. The NLU goal in such systems is to also identify which task the user would like to

perform (usually called user intent).

A modern client-server voice-based transactional system including dialog is depicted in Fig. 1 (see

also [49], [23]). A user opens a client application on his phone and utters a sentence (e.g. query or

command). The client sends the acoustic signal to the server system where it is first converted into text

by the ASR module. Next, a NLU module extracts the semantic information from this text. A popular

approach is top-down hierarchical meaning extraction. A semantic domain classifier can be used to

determine which part of the semantic space a query belongs to. For example, the query “I need a table

for two at the closest Bertucci’s restaurant for tomorrow” belongs to the “Restaurant” domain. Then,

using domain dependent models, a second classifier finds the query intent (what the user asks for). In our

example, the intent is “Restaurant reservation”. Finally using domain and intent dependent models, one

segments the semantic slots (basic semantic entities) associated with the given domain and intent which

have been specified by the user. In our case, the following slots appear and can be extracted from the

sentence: (i) Restaurant name = “Bertucci’s” (ii) Reservation date = “tomorrow”, (iii) Party size = “two”

and (iv) Restaurant location = “closest”. After that, a normalizer translates each slot value into a form that
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Figure 1. The architecture of a client-server voice-based transactional system including dialog.

can be used to query a knowledge-database. For our query, we could get the following slot normalized

values: (i) Restaurant name = “Bertucci’s pizzeria” (ii) Reservation date = “03/15/2013” and (iii) Party

size = “2”. The query domain, intent and normalized slot values are further sent out to a dialog manager

which has detailed information about the domain and determines the next system action. In our case,

the dialog manager asks the client application to provide the current user location4, then it interrogates a

business database to find the closest Bertucci’s restaurant and finally detects that a restaurant reservation

also requires time information in order to be fulfilled. Therefore, it will issue back to the user a question

regarding the reservation time. The dialog manager produces the question as text, but that is fed into a

speech synthesizer and turned into an audio signal which is played back to the user. Let’s assume the

user answers “Hum let’s say six in the evening”. The NLU system now detects a single semantic slot

Time = “six in the evening” which is normalized as Time = “6 pm” and sent to the dialog manager along

with “Unknown” domain and intent. The dialog manager, which also keeps track of the dialog states

(possible using a stack), knows that this is the missing piece of information from a previous query and

it can now take action on the query. Some systems send back to the user the parsed information asking

for confirmation: “Ok, I’ll make a reservation for two at Bertucci’s on Main street for March 15th 2013

at 6pm. Is that correct?” If the user agrees, the Execution unit sends all the information to a restaurant

reservation service/web site which performs the actual reservation.

One can easily notice that the dialog system architecture in Fig. 1 generalizes all systems built in the

4either from the internal GPS or from the wireless provider signal triangulation
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past. The DA systems had no client application (at the time users were using landlines), dialog manager

(there was a single-shot query which was automatically routed to a human agent if the system returned a

low confidence), no domain or intent classifiers (the system’s goal was only to return the phone number

of a certain business or individual). They only had a primitive slot extractor (either business name or

location, though often they were asked for separately) and normalizer. The directed dialog systems added

a dialog manager and a small number of fixed intents often specified as a single piece of information5.

On the other hand, the call routers added an intent classifier (with a number of intents ranging from a few

tens to a few hundreds) and a very small number of slots.

From a linguistic viewpoint, these systems could be characterized by the following four criteria

(see Table 3 and [49]): the naturalness and the size of the space of input sentences, the resolution of

the target semantic representation and the size of the target semantic space. The systems have evolved

from a low naturalness, input space, semantic resolution and space size (directed dialog) to medium-

high naturalness, large input space, high semantic resolution and space size (today’s voice transaction

systems).

Table 3. Comparison of several NLU systems with respect to the characteristics of the input utterance space and

the output semantic space (adapted from [49])

NLU system User input utterances Target semantic representation

Naturalness Input space Resolution Semantic space

Directed dialog Low Small Low Small

DA Low Large Low Small

Mixed initiative Low-medium Small High Small

Call routing High Medium Low Small

Voice search & personal assistant Medium-high Large High Large

One important phenomenon is that the text which modern systems are attempting to understand obeys

less and less the syntax rules of the language. Spoken language often contains dysfluencies, restarts and

recognition errors while written text may be highly abbreviated and/or truncated. For example, an SMS

line may be “he like u” while a speech recognized sentence may be “by movie uh kings speech” (the

spoken query was “buy movie king’s speech”).

3.3. Semantic data annotation

As previously mentioned, modern NLU systems often consist of sets of text classifiers which extract

various types of semantic information: query domain, query intent, semantic slots and/or other attributes

of the domain (facets) which sometimes may only be mentioned implicitly (e.g. the fragment “which

make me laugh” in the query “find movies which make me laugh” should be interpreted as a movie genre

and one may need some sort of logic reasoning for extracting these mappings [10]).

5The system could have asked: “What transaction would you like to perform: Flight information, reservation, cancellation,

other?”
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These classifiers need to be trained on large amounts of data in which the semantic entities of interest

are manually annotated. As shown on top of Fig. 1 several sets of manual annotations are necessary: (i)

Speech transcriptions (a textual form of the user spoken utterances) (ii) Semantic domain and/or intent

annotations and (iii) Semantic slot annotations. Although one tries to carefully annotate the data, the

references produced by different human annotators are not identical. Sometimes that is due to annotator

fatigue but most of the time there is a subjective component especially for the semantic annotations. The

inter-annotator disagreement may be 6% for speech transcription [21] but it can get much higher when

semantics is involved.

Therefore one may try to automate parts of the data annotation process. Semantic slot annotation

could be done using Marcus contextual grammars [29][36] which have been theoretically studied for

a long time (a brief introduction is given in the Appendix). We will show here an example of how to

construct and use such a grammar. Let’s assume the vocabulary V is the set of English words and the

starting language A over V is the set of sentences a human might use for interacting with an NLU system

as described in Section 3.2. The set of selectors correspond to the semantic entities we would like to label

and the set of contexts contain the English word we would like to label them with. Let’s say S1 is the set

of restaurant names, S2 is the set of location names and C1, C2 are their corresponding semantic labels:

S1 = {McDonald′s,Boston Market, ...}, C1 = {(< Restaurant >,< /Restaurant >)},

S2 = {Boston,Cambridge, ...}, C2 = {(< Location >,< /Location >)}

and so on. A possible derivation in this grammar is

Find me a McDonald’s in Boston =>

Find me a <Restaurant>McDonald’s</Restaurant> in Boston =>

Find me a <Restaurant>McDonald’s</Restaurant> in <Location>Boston</Location>

In order to generate correct annotations, we require the derivations to be in maximal global mode.

That is, at each derivation step, the word selector x is maximal with respect to all selectors S1, ..., Sn.

That is enforced if we always label first the longest semantic entity that could be labeled. The resulting

annotated sentence obeys Occam’s razor6 (annotates as many words as possible with as few labels as

possible) and is most of the time correct. A simple example is

Find me a Boston Market in Cambridge =>

Find me a <Restaurant>Boston Market</Restaurant> in Cambridge =>

Find me a <Restaurant>Boston Market</Restaurant> in <Location>Cambridge</Location>

If the derivation is not in the maximum global mode one could get:

Find me a Boston Market in Cambridge =>

Find me a <Location>Boston</Location> Market in Cambridge =>

Find me a <Location>Boston</Location> Market in <Location>Cambridge</Location>

which is obviously incorrect.

In [29], the finite and regular families of selectors are investigated. Although in practical systems

the vocabulary, starting axioms, selectors and contexts are all finite, the case where the selectors are

generated by a context sensitive mechanism is of high interest. That is because one name entity may

belong to multiple semantic classes. For example the word “Eagles” belongs to MusicBand, SportsTeam

6For a mathematically formalized version of Occam’s razor see Ray Solomonoff’s theory of universal inductive inference [43]
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and Bird classes. For such ambiguous cases, the set of selectors must also contain some contextual

words to disambiguate the semantic class. As such, the word “Eagles” should appear in fragments like

“Eagles songs” in MusicBand, “Eagles scores” in SportsTeam and “Eagle food” in Bird. The problem

becomes even harder when the sets of context sensitive selectors have to be automatically extracted from

un-annotated data.

An easy way to implement semantic annotation with a Marcus contextual grammar is by using Finite

State Transducer technology [3] [31]. In the Xerox FST toolkit language [3], the grammar shown above

can be written as:

define Location [{Boston}|{Cambridge}] EndTag(Location); # Selector Location

define Restaurant [{McDonald’s}|{Boston Market}] EndTag(Restaurant); # Selector Restaurant

regex Location | Restaurant; # Grammar definition with implicit vocabulary

and the annotated output produced by the toolkit is:

fst[1]: pmatch Find me a Boston Market in Cambridge

Find me a <Restaurant>Boston Market</Restaurant> in <Location>Cambridge</Location>

The main advantage of parsing with FSTs is that the models are very compact (the FST network built

using a location list of 320K items is about 25MB in size) and the amount of processing time is very low

(a few ms per sentence).

3.4. Semantic classification

Semantic classification is the task of mapping relevant pieces of information from a sentence into se-

mantic labels (classes). It mostly relies on constructing features to represent the sentence and building

a classification model. As shown in Fig. 1, one can perform several types of semantic classification.

The semantic domain and intent classification assign to each sentence a single class while the seman-

tic slot extraction identifies and labels parts of the sentence7 . There are mainly two types of statistical

classification approaches [41]:

• Generative (also known as Informative) methods that directly model each of the class densities

separately. Classification is done by examining the likelihood of each class producing the features

(P (Class|Features) ∼ P (Features|Class)×P (Class)) and assigning to the most likely class.

Although not difficult to train, these methods often lag in accuracy. Some examples are Fisher

Discriminant Analysis, Hidden Markov Models and Naive Bayes and they were used in the BBN

Call Director [33] and the AT&T HMIHY [22].

• Discriminative methods that model the class boundaries or class membership directly rather than

the class feature distributions. Because these models take into account all classes simultaneously,

they are harder to train, often involve iterative algorithms and might not scale well. Examples

include Neural Networks, Support Vector Machines, AdaBoost (AT&T SLU system [23]), Condi-

tional Random Fields (Microsoft NLU [10]).

In early systems, the feature set used to represent a sentence was mostly a bag of words or n-grams.

Since many words express no semantics, this was later refined to consist of salient phrases computed

7Slot extraction also performs sentence segmentation and is a more difficult classification task
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based on mutual information. For example, the fragment “cents a minute” strongly suggests a calling

plan [22]. However, sometimes sentence fragments may have a completely different meaning than any

of their constituent words (e.g. “flying spaghetti monster” is a religous sect). The matter is even more

complicated if the semantic segmentation is unknown. If “George Washington” is segmented as a single

semantic entity then it can be interpreted as a person (US president) name. But if contains two semantic

entities then it should be interpreted as a “Town State” entity8. In order to address these issues, newer

systems include semantic parsing based features [10]. Given a semantic dictionary list (also known as

a gazeteer), the entity types of the sentence fragments found in the dictionary can be used as features

instead of the bare words. Other types of features are Language Model scores, syntactic parsing labels

or even semantic class information from another (possibly noisy) source.

3.5. Parsing-based semantics

There has been a large amount of recent work (especially from the Information Extraction community)

dealing with extracting semantics from queries people submit to search engines. These queries can be

either spoken or typed and have been mentioned in Section 3.1 as “voice search” data. One can roughly

divide them into [7]:

(i) Navigational: reaching a website explicitly requested (e.g. “go to facebook”) or a certain state in

the dialog flow (e.g. “go back” or ”cancel”),

(ii) Informational: finding information on the web (e.g. “capital grille restaurant reviews”) and

(iii) Transactional: conducting a transaction on a website (e.g. “make a reservation at capital grille”).

These queries are relatively short, contain many named entities and are often formulated as a concate-

nation of keywords rather than in a natural language. This particular structure makes it easy to generate

a compact representation called query templates. A template is a sequence of terms that are either text

tokens or variables that can be substituted from some dictionary or taxonomy [5]. For example, if the

named entities are replaced by their type in the annotated sentence in Section 3.3 we obtain the template

Find me a <Restaurant> in <Location>

It has been reported that a large number of queries follow a small number of structured patterns /

templates: 90% for real estate and hotel related queries and 80% for automobile and car rental queries

[1]. The template extraction process is based on abstracting the semantic entities/slots and sometimes

needs a context sensitive mechanism for disambiguation (see the “Eagles” example in Section 3.3).

There are also queries which are inherently ambiguous (have multiple meanings). For example “jobs at

apple” may refer to either employment with Apple or to the former Apple executive Steve Jobs [1].

Each parse can receive a score indicative of its quality. While several scoring functions are analyzed

in [34], a simple heuristic can be Occam’s razor: models which are shorter (contain a smaller number of

slots) and more complete (abstract as much as possible of the query) are to be prefered. Notice that this

heuristic is in itself an optimization process and it is applied to each query at runtime. This contrasts to

the statistical classification methods presented in Section 3.4 where some optimization is performed on

a training set and one hopes that it will generalize to unseen samples.

Parsing-based semantics employs a set of query templates and several fact databases to extract the

8There exists indeed a town named George in the Washington state and a person could say “George Washington” with the same

meaning as “Seattle Washington”. However, people usually avoid this kind of ambiguities in their communication.
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query intent and semantic slots. The semantic domain and intent classes can be associated to each

template rather than to individual queries (a template represents an equivalence class of queries in the

semantic space). If click-through data (search instances that led to clicks on some of the returned links) is

available, this assignment can be done automatically [5], otherwise manual assignment can be performed

starting with the templates that have the highest recall (cover the largest query classes). The names of

the parsed semantic slots can also be used as features for statistical classification complementing those

described in Section 3.4.

There are several advantages of representing queries by template models:

1. Templates generalize the set of target queries and model queries that follow the same patterns but did

not appear in the training data [5]. That is especially useful when bootstrapping an NLU system with

very little usage data available.

2. Templates models do not require retraining as new entities emerge. If a new restaurant opens, its name

can be added to the Restaurant list and all requests applying to other restaurants will generalize to the

new one [5].

3. Since they are derived from real data, templates are more comprehensive than hand-crafted rules and

far more compact than non-generalizing whitelists (lists of cached queries) [1][5].

4. Template models allow for quick query parsing and matching using FST technology (see Section 3.3

and [34]).

5. Template models do not require an apriori domain schema that specifies the semantic slots and their

values. Instead, it learns the most frequent slots automatically while identifying the most relevant tem-

plates [1].

Finally we would like to mention that automatically extracted templates have been successfully used

for semantic reasoning and relation extraction [35]. A small set of manually identified seed facts that are

in a “hidden relation” (e.g. (Vincenzo Bellini, 1801)) was used to extract patterns from a large amount of

web documents. An example template is “LHS BE BORN MONTH RHS” (LHS and RHS denote the

Left Hand Side and Right Hand Side of the seed facts respectively). These templates were in turn used to

infer the same relationship for many other instances of the two semantic entities ( Person and BirthYear).

4. Conclusions and future developments

After five decades of research, natural language understanding and prediction technology has become an

essential part of many human-machine interaction systems (and even human-to-human; see automated

translation). We believe that the tipping point for the large scale deployment of this technology has been

attained with the introduction of smartphones in the late 2000s. There are now voice-based personal as-

sistants, search and transactional systems for most smartphone platforms [18]. The technology is pushed

even further by the search engines (Google, Bing and Yahoo!) which have evolved from simple keyword

search to semantic search [24]. They can now provide direct answers to a wide range of questions (e.g.

“What’s the weather tonight in Boston” or “What are the latest Bruins scores”) rather than links to web

documents.

5. Appendix

In this section we provide definitions for some acronyms and measures used throughout the text:
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WER: Word Error Rate measures the quality of the output produced by a speech recognizer and has

typically been measured against a human-made ground truth reference of the audio input. WER is

computed as the sum of the errors in each of three classes (word substitutions, insertions and deletions)

and is normalized by the number of reference words.

N-gram hit rates express the percentage of n-grams in a corpus which are retained (explicitly modeled)

by a Language Model.

Marcus contextual grammar is a construct G = (V,A, (S1, C1), ..., (Sn, Cn)), n ≥ 1 where V is a

vocabulary, A is a finite language over V , S1,...,Sn are languages over V and C1,...,Cn are finite subsets

of V ∗ × V ∗ (V ∗ is the set of all words/strings over V , including the empty one). The elements of A are

called axioms (starting words), the sets Si are called selectors, and the elements of sets Ci, written in the

form (u, v), are called contexts.

The direct derivation relation on V ∗ is defined as x => y iff x = x1x2x3, y = x1ux2vx3, where

x2 ∈ Si, (u, v) ∈ Ci for some i, 1 ≤ i ≤ n. A derivation is called in maximum global mode if there

are no x′
1
,x′

2
,x′

3
∈ V ∗ such that x = x′

1
x′
2
x′
3
, x′

2
∈ Sj for some 1 ≤ j ≤ n and |x′

1
| ≤ |x1|, |x

′

3
| ≤ |x3|,

|x′
2
| > |x2|.

Semantic template coverage is the ratio of the number of queries that are instances of the template and

the total number of queries.
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Analysis of the Errors Produced by the 2004
BBN Speech Recognition System in the

DARPA EARS Evaluations
Nicolae Duta, Member, IEEE, Richard Schwartz, and John Makhoul, Fellow, IEEE

Abstract—This paper aims to quantify the main error types the
2004 BBN speech recognition system made in the broadcast news
(BN) and conversational telephone speech (CTS) DARPA EARS
evaluations. We show that many of the remaining errors occur
in clusters rather than isolated, have specific causes, and differ
to some extent between the BN and CTS domains. The correctly
recognized words are also clustered and are highly correlated with
regions where the system produces a single hypothesized choice
per word. A statistical analysis of some well-known error causes
(out-of-vocabulary words, word fragments, hesitations, and un-
likely language constructs) was performed in order to assess their
contribution to the overall word error rate (WER). We conclude
with a discussion of the lower bound on the WER introduced by
the human annotator disagreement.

Index Terms—Error analysis, speech recognition.

I. INTRODUCTION

OVER THE last decade, the large-vocabulary continuous-
speech recognition (LVCSR) systems have become more

complex and sophisticated in order to respond to the increased
demand for accuracy, speed, and reliability [17]. The techno-
logical complexity makes it increasingly difficult to understand
the recognition systems’ behavior and explain why they are not
yet working as well as they should [3], [20]. Nevertheless, there
has been a continuous effort to analyze the errors incurred in the
automatic speech recognition process.

Greenberg et al. [5], [6] performed a thorough analysis
of the eight systems present in the NIST 2000 Switchboard
Corpus evaluation. They used a 54-min subset of the Switch-
board corpus which was phonetically annotated with respect to
about 40 acoustic, linguistic, and speaker characteristics. The
correlation between those data characteristics and the recog-
nition-error patterns was subsequently probed using decision
trees. The authors found that the recognition errors were mostly
correlated with the number of phonetic-segment substitutions
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within a word. That is, the probability of a word being incor-
rectly recognized increased significantly when more than 1.5
phones were misclassified. It was also shown that the speech
rate (measured in syllables per second) was highly correlated
with the error patterns as well (see also [12]). Utterances slower
than three syllables per second or faster than six syllables per
second had 50% more recognition errors than utterances within
the normal speaking range. Those correlations were found to
be consistent over the eight systems analyzed.

Stolcke and Shriberg [21], [22] looked into how speech dis-
fluencies affected the following word predictability within the
Switchboard and ATIS corpora. They showed that the language
model (LM) transition probabilities were significantly lower at
hesitation transitions and that was attributable to both the target
word and the word history. It was also suggested that fluent
transitions in sentences with a hesitation elsewhere were sig-
nificantly more likely to involve unmodeled n-grams than tran-
sition in fluent sentences. Based on the findings above, the au-
thors listed disfluencies as “one of the factors contributing to
the poor performance of the automatic speech recognizers” al-
though they did not show explicit statistics for how disfluen-
cies correlate with the recognition errors. They also proposed
a language model that predicted disfluencies probabilistically
and took hidden disfluency events into account. Although the
model locally reduced the word perplexity, it had no impact on
the recognition accuracy.

A recent analysis of spontaneous speech recognition errors
appeared in Furui et al. [3]. It was performed on 510 min of
spontaneous Japanese speech, and it introduced a regression
model for the recognition accuracy as a function of six signal
and speaker attributes: average acoustic frame likelihood,
speech rate, word perplexity, out-of-vocabulary (OOV) rate,
filled pause rate, and repair rate. The authors found that the
recognition accuracy was mostly correlated with the repair
rate and OOV rate and to a somewhat lesser extent with the
speech rate. They hypothesized that the strong effect on errors
of the repair and OOV rates was due to the fact that “a single
recognition error caused by a repair or an OOV word triggers
secondary errors due to linguistic constraints.”

Several other studies (see [1] and the references therein)
attempted to model the relationships between some features
present in the speech signal and the recognition word error rate
(WER) using logistic regression. The regression model was
subsequently used to predict the correctness of the recognition
hypotheses.

1558-7916/$20.00 © 2006 IEEE
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Palmer and Ostendorf [18] proposed a technique to explicitly
model the errors in the speech recognizer’s output in order to
improve the name entity recognition performance in an infor-
mation extraction task. They computed statistics for the name
entities occurring in the Hub-4 Topic Detection and Tracking
data and reported that “the percentage of name words that are
OOV is an order of magnitude larger than words in other phrase
categories.”

In May 2002, the Defense Advanced Research Projects
Agency (DARPA) started a research program called EARS
(Effective, Affordable, Reusable, Speech-to-text) whose major
goal was to reduce recognition word error rates for conversa-
tional telephone speech (CTS) and broadcast news (BN) down
to the 5%–10% range, running in real-time on a single processor
[23]. Progress made in the recognition of English was measured
each year on a “Progress Test” (kept fixed for the duration of
the program and undisclosed to the participating sites) as well
as on “Current Tests” which changed each year and were
made public after the official evaluation. Evaluation conditions
became more difficult each year by imposing runtime limits,
automatic segmentation requirements, and broadening the data
sources. However, due to technological improvements and
increasingly more data available for training,1 the word error
rates decreased from around 30% for BN and 50% for CTS
to around 10% and 15%, respectively. As noted in [17], the
EARS-evaluated systems have achieved “remarkable conver-
gence across both sites and domains,” with the top systems
showing no statistically significant difference in performance
[8], [9].

After the 2003–2004 EARS workshops, we performed de-
tailed analyses of the errors our system made in both BN and
CTS English evaluations. Since the correlation between acoustic
properties of the speech data and the recognition errors was pre-
viously investigated [1], [5], [6], we mainly focused on how the
errors were distributed, whether they occurred independently,
and whether they were correlated with some language properties
of the data. Our analyses show that many of the remaining errors
are not random but have rather specific causes, occur in clusters,
and differ to some extent between the BN and the CTS domains.
The BN system is mostly challenged by the proper nouns in the
news stories and by the utterance end-points; the CTS system is
challenged by a combination of speech disfluencies, high speech
rate, and word contraction; and both systems make substitution
errors on short or (acoustically) similar words.

The goal of this paper is to quantify the frequencies of the
most common error types as well as the errors’ correlation with
challenging speech events like OOVs, word fragments, hesita-
tions, and disfluent speech. In Section IV, we propose a method
to easily detect regions of very high (99%) recognition accu-
racy in the system’s output, which amount to at least half of
the test data. One can resegment the test set in order to keep
fixed the high-accuracy regions produced in the first decoding
stage. Subsequently, it may be possible to reduce the decoding
time as well as to improve the recognition performance by com-
bining with the results produced using the original segmenta-

1More than 2000 h of acoustic training data and over 1 billion words of lan-
guage training data (although only a fraction of the language training is anno-
tated speech) are now available for both BN and CTS.

tion. Finally, Section V explores the human annotator disagree-
ment when transcribing the same audio and its impact on how
low a WER can be achieved.

II. SYSTEMS, MODELS, AND DATA DESCRIPTION

The recognition results reported in this paper were obtained
using the BBN RT04 (Rich Text) system fully described in [13],
[19]. In brief, the system consists of the following.

1) A phoneme decoder-based speech segmenter.
2) 14 Perceptual Linear Prediction (PLP) [7] derived cepstral

coefficient and energy front-end.
3) A two-pass decoder with state-tied mixture (STM) [14]

acoustic and 2-gram LM models in the first pass and
state-clustered tied-mixture (SCTM) [15] noncrossword
acoustic and 3-gram LM models in the second pass in
a Viterbi beam search, followed by either N-best list
(for BN) or lattice (for CTS) rescoring using SCTM
cross-word acoustic models and 4-gram LM.

4) A two-stage decoding process; the first decoding stage
uses speaker independent (SI) models while the second
stage uses speaker adaptively trained (SAT) models. The
adaptation process is done using two feature-space trans-
forms (a speaker-specific heteroscedastic linear discrim-
inant analysis HLDA [11] and a constrained maximum
likelihood linear regression (CMLLR) transform [4]) and
2–16 model parameter transforms (maximum likelihood
linear regression (MLLR) [10]).

Our BN system runs in 10 real time (RT) while the CTS
system is RT.

We performed the error analysis on the BN Eval03 and Eval04
test sets and the CTS Eval01 and Deval042 sets, which were
made available by NIST following the official DARPA evalu-
ations [8], [9]. A quantitative description of the four data sets
along with the BBN’s system accuracy on them is shown in
Table I. All test sets are transcribed by NIST/LDC and also in-
clude annotated tokens for disfluent speech (word fragments and
hesitations).

We used recognition lexicons of 61K (BN) and 57K (CTS)
unique words, to which the most frequent 3K word pairs were
added as compounded words. The OOV rate attained was quite
small: 0.15%–0.7% over the four sets. The language models
we used in this study contained 737 million 4-grams (BN) and
435 million 3-grams (CTS) and were trained on 0.5–1.5 billion
words.

III. QUALITATIVE ERROR ANALYSIS

A. Error Types Present in Both BN and CTS

The main error type that is shared by BN and CTS is substi-
tution of short or (acoustically) similar words (see Table II for a
few examples). These errors make up 15% to 25% of all errors.
In such cases it is hard even for humans to distinguish among
different choices based on local information only. Parsing the
sentence might help in a few BN instances, although often the

2CTS Deval04 consists of both CTS Eval03 and Dev04 test sets.
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TABLE I
SUMMARY OF THE BN AND CTS TEST SETS ON WHICH WE PERFORMED THE ERROR ANALYSIS

TABLE II
EXAMPLES OF SUBSTITUTION OF SHORT OR SIMILAR WORDS IN BN AND CTS RECOGNITION

TABLE III
EXAMPLES OF WORD-SPLITTING ERRORS (THE REFERENCE IS SPELLED AS A SINGLE WORD) IN BN AND CTS RECOGNITION

information necessary to select the “right” choice may be spread
across several sentences.

There are also three common error types which are less fre-
quent but which might be easier to fix than the previous ones.

1) Word splitting (or joining) into valid words accounts for
2%–3% of all errors (e.g., HANGOUT HANG OUT and
HARD WORKING HARDWORKING, see Table III for more
examples). Although the number of such instances is rel-
atively low, each occurrence generates two errors (a sub-
stitution along with a deletion or insertion). Many of these
cases should be considered equivalent in scoring and for
each such possibility one can replace the system output
by the most frequently used version.

2) Plurals are often misrecognized as “ word is” (e.g., CAR-

RIAGES CARRIAGE IS). Some of these errors might be
solved using sentence parsing information in a post-pro-
cessing step.

3) Errors due to inconsistent spelling (e.g., OKAY O.K,
BOUTROUS BOUTROS, TRAVELLING TRAVELING). In
many cases, the reference is incorrect and one needs to be
more careful about spelling conventions.

B. BN Specific Errors

The error analysis revealed the following BN specific errors.

1) Errors generated by proper nouns (person names or
places) account for about 10%–15% of the errors (see
Table IV for a list of name errors made on BN Eval04).
These are mostly due to insufficient training (especially
LM training) or no training at all (OOVs, e.g., IVANISE-

VITCH). We found that about three quarters of the OOV
words are name entities.3 A misrecognized name is often
split up and causes several errors (e.g., BRASWELL

BROWN AS WELL) with an average of 1.5–2 errors per
word. If the lexicon contains names acoustically close
but with different spellings, the system may output any of
related spellings (e.g., HANSSEN HANSEN or HANSON).
The mistaken names are usually different on each test set
and the 10–15 most frequently misrecognized names ac-
count for one third of all name-related errors. A possible

3That is somewhat lower than Palmer’s estimate [18]. The remaining OOV
words consists of rare words (e.g., ESTRANGEMENTS), common words preceded
by a prefix (e.g., PROSLAVERY, REPUBLICATION), or improvised words (e.g.,
SCALAWAG).
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TABLE IV
ERRORS GENERATED BY PROPER NOUNS ON BN EVAL04

TABLE V
BOUNDARY WORD ERROR RATE COMPARED TO THE TOTAL WER

solution to the name problem is a time-adaptive lexicon
and LM update using training data from a time period
immediately preceding the test data [16]. However, the
update data does not usually contain sufficient training
for the name context, so some context sharing with the
regular training data may be needed.

2) There are more errors toward the utterance end-points
than there are in the center (e.g., the BN Eval04 WER
on the first and the last utterance words is 19% versus
13% on other words, see Table V). This could be due
to a segmentation problem (the automatic segmentation
misses the true sentence boundary) or just to having less
context in the language model. However, the CTS system
does not produce a higher WER on end-points neither on
Eval01 (manually segmented) nor on Deval04 (automati-
cally segmented).

C. CTS Specific Errors

We have found the following CTS specific errors.

1) A significant number of errors occur around speech dis-
fluencies: hesitations, repeats, partially spoken words.4 In
such cases, both the acoustic and the language model may
be inaccurate; since many word sequences are unique and
have never occurred before, they cannot be adequately
modeled by the language model. We performed a cheating
experiment where the small (60K 3-grams) test set was
added to the full language model, and that especially
helped in these situations (it halved the unadapted WER).
A few examples of disfluency-related errors are shown in
Table VI.

4That does not imply that the average WER measured around disfluencies has
to be higher than the overall WER. Many disfluencies may produce no errors,
while others may be very costly. We show a quantitative analysis in Section IV-C.

2) Deletion of word sequences. There are multiple instances
where sequences of two to four consecutive words are
deleted from the system’s output (Table VII). We listened
to the audio for 17 such cases, and almost every time, the
deletion could be attributed to a combination of severe
word contraction, very high speech rate, and low volume.
Moreover, in many such cases, the reference was not ac-
curate; it described what the speaker intended to say rather
than what he/she actually said.

IV. QUANTITATIVE ERROR ANALYSIS

A. Error Clustering

The alignments between the reference and the best hypoth-
esis suggested that about two thirds of the errors do not occur in
isolation but rather in groups of two to eight errors (see first row
of Table X). Therefore, the errors do not appear to be indepen-
dent, since under an independence assumption more than 70%
of the errors should be isolated (according to a binomial distri-
bution over samples of the same length as the test utterances).
Since the errors are not homogeneously distributed throughout
the test set (there are regions, e.g., speaker turns or even full
shows, with a much higher error rate than the average), we de-
cided to test the error clustering hypothesis by computing local
statistics like the probability of an error given short histories of
correct/wrong recognitions. We show the error versus correct
state transition automaton in Fig. 1 ( corresponds to the be-
ginning of a sentence while is used to mark the sentence
end).5 One can notice the following.

5We only show the transition probabilities for the BN Eval04 and the CTS
Deval04 sets. The figures corresponding to the remaining two sets are very sim-
ilar in each domain and were omitted for space reasons. The transition probabil-
ities were computed under the assumption that the hesitation tokens were NOT
optional, fact which slightly increased P(Err) for the CTS domain.
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TABLE VI
EXAMPLES OF HESITATION-RELATED ERRORS IN CTS RECOGNITION (HYP DENOTES THE REAL SYSTEM OUTPUT;

HYPC IS THE OUTPUT OF THE CHEATING EXPERIMENT)

TABLE VII
EXAMPLES OF WORD-SEQUENCE DELETIONS BY THE CTS SYSTEM

Fig. 1. Transition probabilities between error and correct states for the BN and
CTS systems.

1) for both domains, which
shows that it is a lot more likely for an error to follow
another error than to occur independently of the history.

2) and 6 (corresponding to errors
made on the utterance end-points) are 50% higher than
P(Err) for BN, which verifies our direct measurements in
Table IV.

A similar automaton corresponding to groups of three ad-
jacent words is shown in Fig. 2 (“0” in a state denotes an
error, while “1” denotes a correct word, e.g., “000” represents
three consecutive errors). The error clustering trend appears
very strong: is 2.5 to 3 times higher than
P(Err), and even when the history contains a correct word, one
still has a much increased probability of error. As expected, the
correctly recognized words are also strongly clustered. How-
ever, as long as the most recent word is correct, the remaining
history does not matter anymore:

.
That is, for correctly recognized words, the third-order Markov

6According to Bayes’ law, P(Errjh=si) = P(h=sijErr) � P(Err)=P(h=si)
= P(h=sijErr) �P(Err)=[P(h=sijErr) �P(Err)+P(h=sijCor) �P(Cor)]
= 0:07 � 0:14=[0:07 � 0:14 + 0:05 � 0:86] = 0:19.

Fig. 2. Transition probabilities for a three word-class (either “correct” or
“error”) state automaton. A “0” in the state denotes an error output word
while a “1” denotes a correct word. Each transition arc is labeled by the
probability of observing the right-most word class (either 0 or 1) of the target
state given the source state (e.g., the transition from [110] to [101] is labeled
by P(1j011) = P(correctjerror; correct;correct)).

model is reduced to a first-order model, while for errors it is
still a third-order model.

B. Identifying Clusters of Correctly Recognized Words

Most state-of-the-art LVCSR systems employ some statistical
measure to assess the confidence in the system’s output. In this
section, we propose a simple method for estimating regions of
correctly recognized output.

For each test set, we aligned the list of the 100 best hy-
potheses, and we analyzed the regions that only had a single
choice for each word. Fig. 3 shows a single word choice versus
multiple word choice automaton computed using the hypotheses
generated after the second (speaker adapted) decoding stage.
This automaton has a clustering trend similar to that in Fig. 1
on both BN and CTS systems and all four test sets. Given that
we are in a single choice region, the probability to remain there
is 0.66 while the overall probability of a single choice word
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TABLE VIII
RECOGNITION STATISTICS ON THE OPTIONAL TOKENS (HESITATIONS AND WORD FRAGMENTS)

TABLE IX
RECOGNITION STATISTICS ON THE UNLIKELY LANGUAGE CONSTRUCTS

Fig. 3. Transition probabilities between single-choice and multiple-choice
states for the BN and CTS systems following the second (speaker adapted)
decoding stage.

is only 0.55. At the same time, .
In other words, there is 99% recognition accuracy on the
single-choice region (about 55% of all words) of each test set.

Similar results are obtained if the hypotheses generated after
the unadapted decoding are used in computing the transition
probabilities. The only difference is that P(single choice) is
slightly lower: 0.53 for BN and 0.48 for CTS. That is, the
regions of high recognition confidence are smaller when the
unadapted system output is used (compared to the output
generated by the adapted system). We noticed that most of the
1% errors found in the single choice per word regions using the
unadapted hypotheses are not fixed after adapted decoding.

If the test set is resegmented at the boundaries of the single
word choice regions, it is possible that redecoding only the mul-
tiple word choice regions in the subsequent adaptation stages
could help in two ways: 1) speed-up the system and 2) improve
accuracy by allowing system combination with the results ob-
tained using the original (unadapted) segmentation.

C. Impact of Nonfluent and Nonmodeled Speech on Errors

We have also measured how nonmodeled words (OOVs),
word fragments, unintelligible speech (generically marked as
“%hesitation” by the human annotators), as well as other forms

of nonfluent speech (repeats, fillers, edits)7 influence the WER.
One should first note that the reference tokens marked as word
fragments and unintelligible speech are optionally deletable
for scoring purposes. That is, one introduces an error if such a
token is substituted but not if it is deleted. All optional tokens
are considered when computing the total number of reference
words by which one normalizes the WER.

As shown in Table VIII, about 1.5%–2.5% (BN) and 4%–5%
(CTS) of all reference words are marked as optional, and they
are a lot more frequent in CTS than in BN. Very few ( 6%) of
the optional tokens are actually full words which can be cor-
rectly recognized. According to Columns 4–5 of Table VIII,
30%–50% of them are indeed correctly recognized. All other
tokens are either nonmodeled word fragments or generic hesita-
tions. Both BN and CTS systems are tuned to delete 70%–90%
of the optional tokens in order not to introduce errors. As a con-
sequence, especially our CTS system, avoids producing output
on some high rate speech regions and on partially spoken words
although those words are not marked as optional in the refer-
ence. That agrees with our observation in Section III-C that the
CTS system is unbalanced toward deletions.

The recognition statistics for the unlikely language constructs
are shown in Table IX. Since we used very large language
models, a word pair (word, word history) was not explicitly
modeled only 3.5%–5% of the time. In most (75%–80%) of
these nonmodeled cases, the system still produced the correct
output. However, the mistakes due to unlikely language con-
structs are very costly: each misrecognized word generates
multiple errors (see last column in Table IX).

Table X shows the (per cluster) distribution of the errors gen-
erated by the three event types: OOVs, optional tokens, and un-
likely language constructs. The count of each event (and its as-
sociated error count) was computed for each error cluster length

7These events were not explicitly marked as such in our references. However,
we considered them to occur in regions that did not contain OOVs but in which
our very large LMs had to be backed-off up to a unigram. Given that our LM’s
bigram hit rate is 98% on fluent (like newspaper) text, there is only a 2% chance
that a fluent word pair is not modeled; most remaining pairs are examples of
unlikely language constructs.
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TABLE X
STATISTICS OF THE ERROR DISTRIBUTION (COUNTS OF THE ERRORS OCCURRING IN CLUSTERS/GROUPS OF LENGTH i) ALONG WITH ERROR CONTRIBUTION

FROM OOVS, OPTIONAL TOKENS, AND UNLIKELY LANGUAGE EVENTS. THE FIRST FIGURE IS THE EVENT COUNT, THE SECOND IS THE

ASSOCIATED ERROR COUNT (e.g., SECOND COLUMN IN ROW OOVs SHOWS THAT 254 OF THE 1744 ERRORS THAT OCCUR IN GROUPS OF TWO

ARE GENERATED BY 131 OOV WORDS FOUND IN 127 TWO-ERROR CLUSTERS)

TABLE XI
STATISTICS OF THE LANGUAGE MODEL EVALUATION ORDER MEASURED ON THE SYSTEM’S OUTPUT (1-BEST HYPOTHESIS) FOR THE ERROR SAND CORRECT

REGIONS AS WELL AS ON OOVs, OPTIONAL TOKENS, AND UNLIKELY LANGUAGE CONSTRUCTS. THE EVALUATION ORDER MEASURED

ON THE REFERENCE FOR THE ERROR REGIONS IS ALSO SHOWN FOR COMPARISON

i ( 1 to 8). For example, on BN Eval04, 72 isolated errors were
generated by OOVs, while 131 OOVs occurred in 127 error clus-
ters of length 2 and therefore produced 254 errors. After manu-
ally inspecting the error clusters, it appears that for small values
of (2 to about 4) all the errors in a cluster in which one of the
three target events mentioned above occurs, can be attributed to
that target event.8 According to Table X, the unlikely language
constructs produce the most damage (2.5 errors per occurrence),
followed by OOVs (two errors per occurrence) and by optional
tokens (1.5 errors per occurrence). This result confirms the hy-
pothesis in Furui et al. [3].

It is also interesting to consider the language model behavior
on the error and correct clusters as well as on the three event
classes mentioned previously. Before measuring this behavior,
we have intuitively assumed that whenever a higher order {3–4}
n-gram was not modeled by the LM, the recognition system
had to consider a shorter history and back-off the probability
until the (target, history) was actually modeled. Tables IX and
XI show that is the case most of the time. However, when a

8We noticed that the long error clusters (some of which span the entire utter-
ance) can rather be attributed to low-quality (very fast, low volume, accented,
noisy) speech, so one can consider them outliers.

word is not modeled by the LM and about 8%–15% of the cases
the pair (word, immediate history) is not modeled, the system
prefers to use higher order n-grams which acoustically resemble
the utterance. That is, instead of using the correct 1-gram, the
system uses an incorrect {3–4}-gram. In such cases, a whole
neighborhood of the target word is misrecognized and multiple
errors are generated. That explains why errors due to OOVs and
unlikely language are so costly and often occur in 2–4 word
clusters.

V. DISCUSSION: ERROR MEASUREMENT

The automatic speech recognition errors are defined by the
disagreement between the output of the automatic system and
the output of the human recognition (typically called ground
truth reference) on the same speech data. We would like to con-
clude the paper with a discussion of the error rate dependence
on the human-made ground truth.

The error measure, called word error rate, is computed as
the sum of the errors in each of the three classes (substitu-
tions, insertions, and deletions) and is normalized by the number
of reference words. Usually, a single manually generated and



1752 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 5, SEPTEMBER 2006

carefully annotated (by two independent transcribers with the
disagreements adjudicated by a third person) reference is used
as a ground truth. Although transcriptions are done carefully,
the references produced by different transcriber teams are not
identical.

We present our attempt at quantifying and explaining the
annotation differences (for a full statistical analysis see [2]). In
2003, BBN contracted WordWave to transcribe 1700 h of Fisher
data [9] to be distributed to the EARS community for CTS
acoustic training. In order to measure the quality of the “quick”
transcriptions, WordWave was asked to transcribe the CTS
Eval03 test set for which a careful transcription was provided
by MSU-LDC. After alignment, the WordWave transcription
showed 11.5% WER w.r.t. to the MSU-LDC transcription. We
randomly picked and listened to 15 of the 144 5-min speaker
turns which had multiple transcription differences (343 out of
2511 words) and found the following.

1) In about 30% of the cases, the MSU transcription ap-
peared to be correct, some of the differences may have
been due to carelessness or fatigue of the WordWave
transcriber.

2) In about 15% of the cases, the WordWave transcription
appeared to be correct, we noticed a few differences
on words with foreign origin (e.g., “LA RUE GAS-
TRONOMI QUE”) as well as some cases where MSU
transcribed what the speaker intended to say rather than
what he/she actually said.

3) In about 25% of the cases, we could not tell which tran-
scription was correct; much of the speech was not audible
and there was true ambiguity in the utterance.

4) About 25% of the cases were different spelling conven-
tions (e.g., UH versus AH).

5) About 10% of the differences are due to incomplete anno-
tations of NOISE or LAUGHTER which each transcriber
may mark somewhat randomly if the audio is noisy.

After normalizing the spelling conventions and eliminating
the NOISE markings, the real differences between the two tran-
scriptions were around 6%–7% (this figure was later confirmed
in [2] on multiple transcription sets). As the speech-to-text WER
will soon approach the differences among transcribers, we will
have to account for these differences when computing the WER.
To overcome this problem, several alternative error measures
were introduced in [2].

VI. CONCLUSION

In this paper, we quantified the main error types still present
in a speech recognizer’s output and measured their correlation
with some language properties of the data. We showed that there
are both common and specific error types in BN and CTS. How-
ever, the main error types are somewhat different.

1) In comparison with BN data, CTS data contains very
few name entities, and even though each name still
causes more than one error when misrecognized, the total
number of name-related errors is small.

2) The disproportionate percentage of errors that occur at
the utterance end points in BN did not occur for CTS. It

is unclear at this point whether that is due to the test set
segmentation or to a weak LM at sentence boundaries.

3) The large percentage of deletions that occur in CTS shows
that the system is tuned to avoid errors in regions of dis-
fluent speech a significant number of which are marked as
optional. In this way, the average WER around disfluen-
cies does not become higher than the average WER. How-
ever, some disfluencies may generate multiple errors (see
Tables VI and X).

The four test sets analyzed were consistent with respect to the
error types and frequencies. The only exception was the mis-
recognition of proper names, which was very much dependent
on the time period when the test set was collected. Finally, the
error analysis shows that many of the remaining errors are not
random but have rather specific causes. The challenge is now
how to use this information to reduce the WER. That might
be possible by designing different solutions for different error
classes, and the detection of possible error, or correct regions
might aid in this error class specific process.
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