
Formal Concept Analysis: Themes and Variations
for Knowledge Processing

Sergei O. Kuznetsov1 and Amedeo Napoli2

1 Department of Data Analysis and Artificial Intelligence
Faculty of Computer Science

National Research University Higher School of Economics,
Moscow, Russia

2 LORIA (CNRS – INRIA Nancy Grand-Est – Université de
Lorraine)

B.P. 239, 54506 Vandoeuvre les Nancy, France

skuznetsov@yandex.ru;Amedeo.Napoli@loria.fr

Tutorial on Formal Concept Analysis at IJCAI 2015

IJCAI 2015, Buenos Aires, July 27th 2015

skuznetsov@yandex.ru ; Amedeo.Napoli@loria.fr


Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Summary of the presentation

Introduction

A Smooth Introduction to Formal Concept Analysis
Three points of view on a binary table
Derivation operators, formal concepts and concept lattice
The structure of the concept lattice

Relational Concept Analysis

Pattern Structures

Conclusion and References

S.O. Kuznetsov and A. Napoli FCA Tutorial at IJCAI 2015



Knowledge Discovery in Databases (KDD)

I The process of Knowledge Discovery
in Databases (KDD) is applied on
large volumes of complex data for
discovering patterns which are
significant and reusable.

I KDD is based on three main
operations: data preparation, data
mining, and interpretation of the
extracted units.

I KDD is iterative, i.e. it can be
replayed, and interactive, i.e. it is
guided by an analyst.
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Knowledge Discovery in Databases (KDD)

Data are diverse in nature and
complexity:

I Boolean
I numbers
I symbols
I sequences (time series. . . )
I trees, graphs
I texts (images, speech. . . )
I web data (linked open data)
I ...
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Several Approaches to KDD

I Databases: storage, access, querying, multi-dimensional
databases, privacy, anonymisation.

I Artificial Intelligence: discovering actionable knowledge units,
semantic aspects, embedding constraints and preferences
(skylines), web data, linked open data.

I Algorithmics: scalability, distributed computing.
I Statistics and probablities: sampling, statistical processes,

divergence, exploratory statistics, stochastic processes.
I Geometry: non Euclidean data spaces, metrics, geodesics.
I Visualization: interaction, interfaces,
I ...



Knowledge Discovery guided by Domain Knowledge

I The KDD process can be guided by
domain knowledge at each step of the
process for implementing Knowledge
Discovery guided by Domain
Knowledge (KDDK).

I KDDK extends KDD with a fourth
step, i.e. representation and reuse of
the extracted units.

I KDDK can be used for extending and
updating a knowledge base: knowledge
discovery and knowledge
representation are complementary
tasks.
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Knowledge is good for KDD

Domain knowledge can be useful for:

I Fixing thresholds in pattern mining.
I Computing similarity between objects (weighted features).
I Selecting patterns w.r.t. interest measures depending on

domain knowledge (e.g. in chemistry using specific
heteroatoms or functional groups), most-informative patterns,
preferences.

I Using background knowledge for improving classification
quality and accuracy (attribute representation).

I Dually, for efficiency reasons, reducing sets of attributes
–feature selection– using classification for selecting groups of
attributes.



KDD is good for Knowledge Engineering

I KDD is a learning process
that can be used for
knowledge engineering,
information retrieval, problem
solving. . .

I Formal concepts in a concept
lattice can provide a basis for
“partial” and “complete
concepts”.

I Implications also yield concept
definitions.



KDDK: some application domains

I agronomy: analysis of landscape and of water quality.
I biology: resource retrieval, gene classification and similarity.
I chemistry and drug design: classification of molecules and

reactions (meta-reactions).
I cooking: discovery of adaptation rules for CBR.
I medicine: text mining, management of patient trajectories.
I recommendation: biclustering, preference management

(skylines).
I privacy: preserving privacy and anonymisation.
I network management: network analysis, attack prevention and

prediction.
I . . .



An Ordinal View of KDDK

I How to combine discovery and representation of knowledge
units?

I Classification is polymorphic and allows us to use partial
orderings and their properties for dealing with KDD and KR.

I Revisiting Classification:
I Discovery of classes for understanding data.
I Organization of classes into a partial ordering.
I Classification-based reasoning: recognizing the class of an

individual and inserting a new class in a partial ordering

I Do we have such a “Swiss knife”:
Probably Formal Concept Analysis is of some help here. . .
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What can we learn from a binary table and how?

Objects / Items a b c d e
o1 x x x
o2 x x x
o3 x x x x
o4 x x
o5 x x x x
o6 x x x
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The itemsets extracted from the binary table

Objects / Items a b c d e
o1 x x x
o2 x x x
o3 x x x x
o4 x x
o5 x x x x
o6 x x x

The itemsets extracted from the
binary table with the support
threshold σS = 2/6 are:

I Itemsets of size 1: {a} (5/6),

{b} (3/6), {c} (5/6), {d}
(5/6).

I Itemsets of size 2: {ab}
(2/6), {ac} (4/6), {ad}
(5/6), {bc} (3/6), {bd}
(2/6), {cd} (4/6).

I Itemsets of size 3: {abc}
(2/6), {abd} (2/6), {acd}
(4/6), {bcd} (2/6).

I Itemsets of size 4: {abcd}
(2/6).



The association rules extracted from the binary table

Objects / Items a b c d e
o1 x x x
o2 x x x
o3 x x x x
o4 x x
o5 x x x x
o6 x x x

The association rules extracted
from the binary table with the
thresholds σS = 2/6 (support) and
σC = 2/5 (confidence):

I {a} −→ {b} (2/6,2/5),
{b} −→ {a} (2/6,2/3),
{a} −→ {c} (4/6,4/5),
{c} −→ {a} (4/6,4/5) ...

I {ab} −→ {c} (2/6,1),
{ac} −→ {b} (2/6,1/2),
{bc} −→ {a} (2/6,2/3),
{c} −→ {ab} (2/6,2/5),
{b} −→ {ac} (2/6,2/3),
{a} −→ {bc} (2/6,2/5) ...



The lattice associated to the binary table

Objects / Items a b c d e
o1 x x x
o2 x x x
o3 x x x x
o4 x x
o5 x x x x
o6 x x x
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FCA, Formal Concepts and Concept Lattices

I Marc Barbut and Bernard Monjardet, Ordre et classification, Hachette, 1970.
I Claudio Carpineto and Giovanni Romano, Concept Data Analysis: Theory and Applications, John

Wiley & Sons, 2004.
I Bernhard Ganter and Rudolf Wille, Formal Concept Analysis, Springer, 1999.
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The FCA process

I The basic procedure of Formal Concept Analysis (FCA) is
based on a simple representation of data, i.e. a binary table
called a formal context.

I Each formal context is transformed into a mathematical
structure called concept lattice.

I The information contained in the formal context is preserved.
I The concept lattice is the basis for data analysis.

It is represented graphically to support analysis, mining,
visualization, interpretation. . .
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A concrete example

Animal/Features eggs feather teeth fly swim breath
ostrich x x x
canary x x x x
duck x x x x x
shark x x x
salmon x x
frog x x x

crocodile x x x x



A concrete example



The notion of a formal context

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I (G, M, I) is called a formal context where G (Gegenstände) and
M (Merkmale) are sets, and I ⊆ G× M is a binary relation
between G and M.

I The elements of G are the objects, while the elements of M are
the attributes, I is the incidence relation of the context
(G, M, I).
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Two derivation operators

For A ⊆ G and for B ⊆ M:

I ′ : ℘(G) −→ ℘(M)
′ : A −→ A′

A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I ′ : ℘(M) −→ ℘(G) with
′ : B −→ B′

B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}
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Computing the images of sets of objects and attributes

{g2}′ = {m1, m3, m4}:

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}
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Computing the images of sets of objects and attributes

{m3}′ = {g1, g2, g3, g5, g6}:

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}
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Computing the images of sets of objects and attributes

{g3, g5}′ = {m1, m2, m3, m4}:

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x
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Computing the images of sets of objects and attributes

{m3, m4}′ = {g2, g3, g5, g6}:

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x
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The derivation operators and the Galois connection

I ′ : ℘(G) −→ ℘(M) with A −→ A′

I ′ : ℘(M) −→ ℘(G) with B −→ B′

I These two applications induce a Galois connection between
℘(G) and ℘(M) when sets are ordered by set inclusion.

A Galois connection is defined as follows:

I Let (P,≤) and (Q,≤) be two partially ordered sets.
I A pair of maps φ : P −→ Q and ψ : Q −→ P is called a Galois

connection between P and Q if:
I (i) p1 ≤ p2 =⇒ φ(p1) ≥ φ(p2) (decreasing).
I (ii) q1 ≤ q2 =⇒ ψ(q1) ≥ ψ(q2) (decreasing).
I (iii) p ≤ ψ ◦ φ(p) and q ≤ φ ◦ ψ(q) (increasing).
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Iterating the derivation

I A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}
I The derivation operators can be composed, i.e. iterated:

starting with a set A ⊆ G, we obtain that A′ is a subset of M.
I Applying the second operator on this set, we get (A′)′, or A′′

for short, which is a set of objects.
I Continuing, we obtain A′′′, A′′′′, and so on.
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Iterating the derivation

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I {g3}′′ = {m1, m2, m3, m4}′ = {g3, g5}
I {g1, g3, g5}′′ = {m2, m3}′ = {g1, g3, g5}
I {m3, m4}′′ = {g2, g3, g5, g6}′ = {m1, m3, m4}
I {m3}′′ = {g1, g2, g3, g5, g6}′ = {m3}
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Properties of the derivation operators

I A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}

The derivation operators ′ satisfy the following rules:

I A1 ⊆ A2 =⇒ A′2 ⊆ A′1 (decreasing).
I B1 ⊆ B2 =⇒ B′2 ⊆ B′1 (decreasing).

I A ⊆ A′′ and A′ = A′′′ (increasing and fix point).
I B ⊆ B′′ and B′ = B′′′ (increasing and fix point).
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Examples

G / M m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I A1 ⊆ A2 =⇒ A′2 ⊆ A′1
I B1 ⊆ B2 =⇒ B′2 ⊆ B′1
I A ⊆ A′′ and A′ = A′′′

I B ⊆ B′′ and B′ = B′′′
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Other properties of the derivation operators

For A1, A2 ⊆ G, and dually for B1, B2 ⊆ M, we have:

I A1 ⊆ A2 =⇒ A′′1 ⊆ A′′2 (increasing).
I B1 ⊆ B2 =⇒ B′′1 ⊆ B′′2 (increasing).
I (A′′)′′ = A′′ (fix point).
I (B′′)′′ = B′′ (fix point).
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Formal concept

Given a formal context (G, M, I):

I A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}
I (A, B) is a formal concept of (G, M, I) iff:

A ⊆ G, B ⊆ M, A′ = B, and A = B′.
I A is the extent and B is the intent of (A, B).
I The mappings A −→ A′′ and B −→ B′′ are closure operators.
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The Galois connection and the closure operators

More generally, a closure operator on a set S is a map κ such that:

I κ : ℘(S) −→ ℘(S)
I For all S1, S2 ⊆ S:

I (i) S1 ⊆ κ(S1) (extensivity: S1 ⊆ S
′′

1 )
I (ii) S1 ⊆ S2 then κ(S1) ⊆ κ(S2)

(monotonicity: S1 ⊆ S2 =⇒ S
′′

1 ⊆ S
′′

2 )
I (iii) κ(κ(S1)) = κ(S1) (idempotency: (S

′′

1 )
′′

= S
′′

1 )

I Si is a closed set whenever κ(Si) = Si or S
′′
i = Si.

I The composition operators ′′, i.e. the composition of ’ and ’,
are closure operators.
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The concept lattice

I Formal concepts can be partially ordered by:
(A1, B1) ≤ (A2, B2)⇐⇒ A1 ⊆ A2 (dually B2 ⊆ B1).

I The set B(G, M, I) of all formal concepts of (G, M, I) with this
order is a complete lattice called the concept lattice of (G, M, I).

I Every complete lattice has a top (or unit) element denoted by
>, and a bottom (or zero) element denoted by ⊥.
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The concept lattice

G / M m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x
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The basic theorem of FCA

I The concept lattice B(G, M, I) is a complete lattice in which
the infimum and the supremum are given by:

I
∧

k∈K(Ak, Bk) = (
⋂

k∈K Ak, (
⋃

k∈K Bk)′′)

I
∨

k∈K(Ak, Bk) = ((
⋃

k∈K Ak)′′,
⋂

k∈K Bk)

I Note: an intersection of closed sets is a closed set but a union
of closed sets is not necessarily a closed set.
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The structure of the concept lattice
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The object concept

I The name of the object g is attached to the “lower half” of the
corresponding object concept `(g) = ({g}′′, {g}′).

I The object concept of an object g ∈ G is the concept
({g}′′, {g}′) where {g}′ is the object intent {m ∈ M/gIm} of g.

I The object concept of g, denoted by `(g), is the smallest
concept (for the lattice order) with g in its extent.
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The object concept

I Example:

I `(g4) = ({g4}′′, {g4}′) =
({g2, g3, g4, g5, g6}, {m1, m4})

I `(g1) = ({g1}′′, {g1}′) =
({g1}, {m2, m3, m5})



The attribute concept

I The name of the attribute m is located to the “upper half” of
the corresponding attribute concept µ(m) = ({m}′, {m}′′).

I Correspondingly, the attribute concept of an attribute m ∈ M is
the concept ({m}′, {m}′′) where {m}′ is the attribute extent
{g ∈ G/gIm} of m.

I The attribute concept of m, denoted by µ(m) is the largest
concept (for the lattice order) with m in its intent.



The attribute concept

I Example:

I µ(m1) = ({m1}′, {m1}′′) =
({g2, g3, g4, g5, g6}, {m1, m4})

I µ(m1) = µ(m4)

I µ(m2) = ({m2}′, {m2}′′) =
({g1, g3, g5}, {m2, m3})



The reduced labeling

G / M m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I A reduced labeling may be used allowing that each object and
each attribute is entered only once in a diagram.

I Reduced labeling: intuitively, the attributes are “at the
highest” and the objects are “at the lowest”.
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The reduced labeling

G / M m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I For any concept (A, B) we
have:

I g ∈ A⇐⇒ `(g) ≤ (A, B)

I m ∈ B⇐⇒ (A, B) ≤ µ(m)
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An extent is an ideal (down-set)

I Let (P,≤) be an ordered set.
A subset Q ⊆ P is an order ideal or a down-set if x ∈ Q and
y ≤ x imply that y ∈ Q.

I ↓ Q = {y ∈ P/∃x ∈ Q : y ≤ x}
↓ x = {y ∈ P/y ≤ x}

I The extent of an arbitrary concept can be found as the set of
objects in the principal ideal generated by the concept.

I For example, the extent of a concept X is composed of all
objects which are in the extents of the descendants Y of X.
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An intent is a filter (up-set)

I Let (P,≤) be an ordered set.
A subset Q ⊆ P is an order filter or an up-set if x ∈ Q and
x ≤ y imply that y ∈ Q.

I ↑ Q = {y ∈ P/∃x ∈ Q : x ≤ y}
↑ x = {y ∈ P/x ≤ y}

I The intent of an arbitrary concept can be found as the set of
objects in the principal filter generated by the concept.

I For example, the intent of a concept X is composed of all
attributes which are in the intents of the ascendants Y of X.
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Ideals and filters

I The extent of concept C1 is
composed of g4 and all
objects which are in the
extents of the descendants
Ci of C1, i.e. g2, g6 and
then g3, g5.

I The intent of a concept C5
is composed of all
attributes which are in the
intents of the ascendants Ci
of C5, i.e. m2, m1, m4 and m3.



Types of attributes

I Introducing and attribute: an attribute α is introduced in a
concept C when it is not present in any ascendant
(super-concept) of C, i.e. the concept C corresponds to the
attribute concept of α (sometimes called the introducer of α).

I Inheriting an attribute: an attribute α is inherited by a concept
C when it is already present in an ascendant of C, i.e. C is
lower for the lattice order than the attribute-concept or
introducer of α.



Types of attributes (example)

I m3 is an attribute
introduced in the concept
(g12356, m3), m1 and m4
are attributes introduced in
the concept (g23456, m14),

I m2 is an attribute
introduced in the concept
(g135, m23).

I m3 is an attribute inherited
by (g135, m23), m1, m3, and
m4, are attributes inherited
by (g2356, m134), and so
on.



Extracting rules from a concept lattice

Mutual implications between attributes having the same
attribute-concept

I Attributes having the same
attribute-concept or
introducer are equivalent:

I for example m1←→ m4 for
(g23456, m14).



Extracting rules from a concept lattice (continued)

Introduced attributes imply inherited attributes

I When an attribute α is
introduced, it implies every
inherited attribute in the
attribute-concept of α:

I for example m2 −→ m3 for
(g135, m23) and
m5 −→ m23 for (g1, m235).
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Scaling
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Conceptual scaling

I The formal context is the basic data type of Formal Concept
Analysis.

I However data are often given in form of a many-valued
context.

I Many-valued contexts are translated to one-valued context via
conceptual scaling.

I But this is not automatic and some arbitrary choices have to
be made.

I Examples of scalings:
I Nominal: K = (N, N,=)
I Ordinal: K = (N, N,≤)
I Interordinal: K = (N, N,≤ ∪ ≥)
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The example of the context of planets

Planet Size Distance to Sun Moon(s)
Jupiter large far yes
Mars small near yes

Mercury small near no
Neptune medium far yes
Pluto small far yes
Saturn large far yes
Earth small near yes
Uranus medium far yes
Venus small near no



The context of planets after nominal scaling

Planet Size Distance to Sun Moon(s)
small medium large near far yes no

Jupiter x x x
Mars x x x

Mercury x x x
Neptune x x x
Pluto x x x
Saturn x x x
Earth x x x
Uranus x x x
Venus x x x



The concept lattice of planets (after scaling)



A numerical example

G / M m1 m2 m3
g1 1 3 4
g2 2 2 3
g3 4 1 1
g4 3 2 1

Nominal Scaling:

G / M m1=1 m1=2 m1=4 m2=1 m2=2 m2=3 m3=1 m3=3 m3=4
g1 x x x
g2 x x x
g3 x x x
g4 x x x

Interordinal Scaling:

G / M m1.lt.1 m1.gt.1 m1.lt.2 m1.gt.2 m1.lt.3 m1.gt.3 m1.lt.4 m1.gt.4 m2.lt.1 m2.gt.1
g1 x x x x x x
g2 x x x x x x
g3 x x x x x x x
g4 x x x x x x
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Three points of view on a binary table
Derivation operators, formal concepts and concept lattice
The structure of the concept lattice

A simple algorithm for discovering formal concepts and building the
concept lattice
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An algorithm for computing the formal concepts

I A rectangle in a binary table corresponds to a pair (X, Y)
–where X denotes an extension and Y denotes an intension–
only contains crosses x.
Such an extension and intension are not necessarily extents
and intents respectively.

I A rectangle (X, Y) is contained in another rectangle (X1, Y1)
whenever X ⊆ X1 and Y ⊆ Y1.

I A rectangle (X, Y) is maximal when it is not included in any
other rectangle: any rectangle (X1, Y1) containing a maximal
rectangle (X, Y) is such that X1 and/or Y1 contain at least a
“void place”, i.e. a place without a cross x.



An algorithm for constructing the concept lattice

Set L1 = {(Xi, Yi), i = 1, . . . , n} (n = number of objects)
L1 = set of rectangles (Xi, Yi) of size 1 with Yi = X′i
Set k = 1
While the size of Lk is strictly greater than 1 do
Set Lk+1 = ∅

For all i < j index of elements of Lk which are not marked do
Yij = Yi ∩ Yj
If Yij 6= ∅ then

If Yij ∈ Lk+1 then Xij = Xij ∪ Xj
Lk+1 = Lk+1 ∪ (Xij, Yij)
If Yij = Yi then mark (Xi, Yi) in Lk endif
If Yij = Yj then mark (Xj, Yj) in Lk endif

endif
endfor

endwhile
L is the set of elements which are not marked in the set of Lk.



An example of construction of a concept lattice (1)

G / M m1 (a) m2 (b) m3 (c) m4 (d) m5 (e)
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

For better readability: M = {a, b, c, d, e}

The rectangles of size 1:
L1 = {(g1, bce), (g2, acd), (g3, abcd), (g4, ad), (g5, abcd), (g6, acd)}



An example of construction of a concept lattice (2)

I The rectangles of size 1:
I L1 =
{(g1, bce), (g2, acd), (g3, abcd), (g4, ad), (g5, abcd), (g6, acd)}

I Build the rectangles of size 2 by union of rectangles of size 1:
I L2 = ∅

i = 1, . . . , 5 ;
i = 2, . . . , 6 ;
i < j

I Y12 = c ; L2 = {(g12, c)}
I Y13 = bc ; L2 = {(g12, c), (g13, bc)}
I Y14 = ∅
I Y15 = bc ; X13 = X13 ∪ X5 and L2 = {(g12, c), (g135, bc)}
I Y16 = c ; X12 = X12 ∪ X6 and L2 = {(g126, c), (g135, bc)}



An example of construction of a concept lattice (3)

I The rectangles of size 2 (continued):
I Y23 = acd ; L2 = {(g126, c), (g135, bc), (g23, acd)}

as Y23 = Y2 mark (g2, acd) in L1

I Y24 = ad ; L2 = {(g126, c), (g135, bc), (g23, acd), (g24, ad)}
as Y24 = Y4 mark (g4, ad) in L1

I Y25 = acd ;
L2 = {(g126, c), (g135, bc), (g235, acd), (g24, ad)}

I Y26 = acd ;
L2 = {(g126, c), (g135, bc), (g2356, acd), (g24, ad)}
as Y26 = Y6 mark (g6, acd) in L1



An example of construction of a concept lattice (4)

I The rectangles of size 2 (continued):
I L2 = {(g126, c), (g135, bc), (g2356, acd), (g24, ad)}
I Y35 = abcd ;

L2 = {(g126, c), (g135, bc), (g2356, acd), (g24, ad), (g35, abcd)}
as Y35 = Y3 mark (g3, abcd) in L1

as Y35 = Y5 mark (g5, abcd) in L1

I Y36 = acd ; do nothing as
L2 = {(g126, c), (g135, bc), (g2356, acd), (g24, ad), (g35, abcd)}

I Y45 = ad ;
L2 = {(g126, c), (g135, bc), (g2356, acd), (g245, ad), (g35, abcd)}

I Y46 = ad ;
L2 = {(g126, c), (g135, bc), (g2356, acd), (g2456, ad), (g35, abcd)}

I Y56 = ad ; do nothing as
L2 = {(g126, c), (g135, bc), (g2356, acd), (g2456, ad), (g35, abcd)}



An example of construction of a concept lattice (5)

I The rectangles of size 2 (end):
I L2 = {(g126, c), (g135, bc), (g2356, acd), (g2456, ad), (g35, abcd)}
I L1 = {(g1, bce)} (all other elements are marked)
I The rectangles of size 3 and more:
I L3 = ∅



An example of construction of a concept lattice (6)

I The rectangles of size 3 and more:
I L2 = {(g126, c), (g135, bc), (g2356, acd), (g2456, ad), (g35, abcd)}
I L3 = ∅
I Y12 = c in L2 ; L3 = {(g12356, c)}
I Y13 = c in L2 ; then do nothing
I Y14 = c in L2 ; then do nothing
I Y15 = ∅
I Y23 = c in L2 ; then do nothing
I Y24 = ∅
I Y25 = bc in L2 ; then do nothing
I Y34 = ad in L2 ; L3 = {(g12356, c), (g23456, ad)}

as Y34 = Y4 mark (g2456, ad) in L2

I Y35 = acd in L2 ; then do nothing
I Y45 = ad (in L2) ; then do nothing



An example of construction of a concept lattice (5)

The list of maximal rectangles:

I L1 = {(g1, bce)}
I L2 = {(g135, bc), (g2356, acd), (g35, abcd)}
I L3 = {(g12356, c), (g23456, ad)}



An example of construction of a concept lattice (6)
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Relational Concept Analysis

I Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli and Petko Valtchev. Relational
Concept Analysis: Mining Concept Lattices From Multi-Relational Data, Annals of Mathematics
and Artificial Intelligence, 67(1):81–108, 2013.

I Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli and Petko Valtchev. Soundness
and Completeness of Relational Concept Analysis, in Proceedings of ICFCA 2013, LNAI 7880,
Springer, pages 228-243, 2013.

I Victor Codocedo and Amedeo Napoli. A proposition for combining pattern structures and
relational concept analysis, in Proceedings of ICFCA 2014, LNAI 8478, Springer, pages 96-111,
2014.
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Introducing Relational Concept Analysis (RCA)

I The objective of RCA is to take into account relations between
objects within the FCA framework.

I The RCA process relies on the following main points:
I a relational model which can be seen as a kind of

entity-relationship model,
I a conceptual scaling process allowing to represent relations

between objects as relational attributes,
I an iterative process for designing a concept lattice where

concept intents include binary and relational attributes.

I The RCA process provides “relational structures” that can be
represented as ontology concepts within a knowledge
representation formalism such as description logics (DLs).
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The RCA data model

I The RCA data model relies on a so-called relational context
family denoted by RCF = (K,R), where:

I K is a set of formal contexts Ki = (Gi, Mi, Ii),
I R is a set of relations rk ⊆ Gi × Gj, where Gi and Gj are sets

of objects from the formal contexts Ki and Kj .
I A relation r ⊆ Gi × Gj has a domain and a range where:
I dom(r) = Gi and ran(r) = Gj.
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An example

Suppose that we have a context Papers× Topics where:

I Papers denotes a set of papers –indexed from “a” to “`”–
I Topics denotes a set of three attributes, namely “lt” for

“lattice theory”, “mmi” for “man-machine interface”, and “se”
for “software engineering”.

I There are two relations:
I cites ⊆ Papers× Papers indicates that a paper is citing

another paper,
I develops ⊆ Papers× Papers indicates that a paper is

developing another paper.



The initial relational context

lt mmi se a b g h c d i j
a x
b x
c x x
d x x
e x
f x
g x
h x
i x
j x
k x
` x

I Relational context: (K,R) = (K0, {cites, develops})
I K = K0 = (Papers, Topics, I)

I R = {cites, develops}
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The L0 concept lattice built from formal context K0

lt mmi se
a x
b x
c
d
e
f
g x
h x
i
j
k
`
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Introducing relational scaling

I The first step consists in building an initial concept lattice L0
from the the initial context K0 using FCA algorithms.

I The second step takes into account relations r(oi, oj) for
building a new context K1:
I r(oi, oj) means that object oi ∈ Gi is related through relation

r with object oj ∈ Gj ,
I then a relational attribute of the form ∃r.Ck is associated to

object oi in K1, where Ck is any concept instantiating oj in
L0.

I When all relations between objects have been examined, the
next context K1 is completed and a new concept lattice L1 is
built accordingly.



The relational context K0

lt mmi se a b g h c d i j
a x
b x
c x x
d x x
e x
f x
g x
h x
i x
j x
k x
` x

I c cites a and g, d cites b and h,
I i cites a and j cites b.



Relational scaling in L0

I Object c is in relation with objects a and g through relation
cites.

I Object a is in the extent of concepts C0 and C2 in L0 while
object g is in the extent of concepts C3 and C2 in L0.

I Thus, object c is given three new relational attributes, namely
∃cites:C0, ∃cites:C2, and ∃cites:C3.



Relational scaling in L0

I Object d is in relation with objects b and h through relation
cites.

I Object b is in the extent of concepts C0 and C2 in L0 while
object h is in the extent of concepts C4 and C2 in L0.

I Thus, object d is given three new relational attributes, namely
∃cites:C0, ∃cites:C2, and ∃cites:C4.



Relational scaling in L0

I Object i is in relation with object a through relation cites.
I Object a is in the extent of concepts C0 and C2 in L0.
I Thus, object i is given two new relational attributes, i.e.
∃cites:C0 and ∃cites:C2.

I In the same way, j in relation with b through cites is given
the two relational attributes ∃cites:C0 and ∃cites:C2.



The relational context K0

lt mmi se a b g h c d i j
a x
b x
c x x
d x x
e x
f x
g x
h x
i x
j x
k x
` x

I e develops c and f develops i,
I k develops j and ` develops j.



Relational scaling in L0

I The same process is applied to develops:
I e is in relation through develops with c (in the extent of C2),

I f is in relation through develops with d (in the extent of C2),

I k is in relation through develops with i (in the extent of C2),

I ` is in relation through develops with j (in the extent of C2),

I The four objects e, f, k, and `, are given the relational attribute ∃develops:C2.



The new relational context K1

lt mmi se cites:c2 cites:c0 cites:c3 cites:c4 develops:c2
a x
b x
c x x x
d x x x
e x
f x
g x
h x
i x x
j x x
k x
` x



The concept lattice L1



Following the construction of the lattice

I The numbering of concepts is kept all along the whole process.
I The relational scaling process is continued as soon as the

“instantiation” of one of the objects which is in the range of a
relation has changed.

I In L1, no instantiation of objects in the range of the cites
relation is changed: thus, there will be no other modification
for the cites and relational scaling is done.

I Actually: object c is in relation with a and g while object d is
in relation with b and h, but the instantiations of a, g, b, and
h are not changed.

I Object i is in relation with a and j with b, but the
instantiation of a and b are not changed.



Relational scaling in L1

I The object e develops c whose instantiation has changed, i.e. c is in the extents of concepts C2,
C5, and C6.

I Thus object e is in addition given the relational attributes ∃develops:C5 and ∃develops:C6.



Relational scaling in L1

I Object f develops d whose instantiation is in the extent of concepts C2, C5, and C7.
I Object k develops i whose instantiation is in the extent of concepts C2 and C5.
I Object ` develops j whose instantiation is in the extent of concepts C2 and C5.



The new relational context K2

lt mmi se develops:c2 develops:c5 develops:c6 develops:c7
a x
b x
c
d
e x x x
f x x x
g x
h x
i
j
k x x
` x x



The concept lattice L2
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The completion of the RCA process

I Relational scaling is still applied for cites and develops but
the final context and the associated concept lattice are
obtained after the second step.

I More generally, relational scaling is applied and either there are
modifications in the instantiations, i.e. RCA process continues,
or there are no more modifications, i.e. RCA fix-point is
reached.

I The relational scaling process reaches a fix-point when no
more changes in instantiations occur, i.e. the final relational
lattice is reached and the relational scaling process terminates.
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Three forms of relational attributes

I Existential scaling ∃r.C: r(o) ∩ Extent(C) 6= ∅
I Universal scaling ∀r.C: r(o) ⊆ Extent(C)

I Universal-Existential scaling ∀∃r.C: r(o) ⊆ extent(C) and
r(o) 6= ∅

I With relational scaling, the homogeneity of concept
descriptions is kept: all attributes –included relational
attributes– are considered as binary attributes.

I Standard FCA algorithms for building concept lattices can be
straightforwardly reused.
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From a relational concept lattice to an ontology schema

I The concepts of the final concept lattice can be represented
within a DL formalism such as ALE for designing an ontology
schema supported by the lattice.

I Some problems about knowledge representation are arising for
representing binary and relational attributes.

I Binary attributes can be represented as atomic concepts.
I Thanks to the semantics associated with relational scaling and

operators, roles can be attached to defined concepts in a
“natural” way using a construction such as ∃r.C.
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Pattern Structures

I Bernhard Ganter and Sergei O. Kuznetsov. Pattern Structures and Their Projections, in
Proceedings of the 9th International Conference on Conceptual Structures (ICCS-2001), LNCS
2120, pages 129–142, 2001.

I Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli and Sébastien Duplessis. Mining Gene
Expression Data with Pattern Structures in Formal Concept Analysis, Information Science,
181(10):1989–2001, 2011.

I Mehdi Kaytoue, Sergei O. Kuznetsov and Amedeo Napoli. Revisiting Numerical Pattern Mining
with Formal Concept Analysis, in Proceedings of 22nd International Joint Conference on
Artificial Intelligence (IJCAI-11), Barcelona, Spain, 2011.
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Computing similarity between descriptions

Intersection considered as a similarity operator:

I ∩ behaves like a similarity operator :

{m1,m2} ∩ {m1,m3} = {m1}

m1 m2 m3

g1 × ×
g2 × ×
g3 × ×
g4 × ×
g5 × × ×

I ∩ induces a partial ordering relation ⊆ as follows:
S1 ∩ S2 = S1 ⇐⇒ S1 ⊆ S2

{m1} ∩ {m1,m2} = {m1} ⇐⇒ {m1} ⊆ {m1,m2}
I ∩ has the properties of a meet u in a semi lattice, i.e. a

commutative, associative and idempotent operation:

c u d = c ⇐⇒ c v d



The definition of a Pattern Structure

A pattern structure (G , (D,u), δ) is composed of:

I G a set of objects,

I (D,u) a semi-lattice of descriptions or patterns,

I δ a mapping such as δ(g) ∈ D describes object g .

The Galois connection for (G , (D,u), δ) is defined as:

I The maximal description representing the similarity of a set of
objects:

A� = ug∈Aδ(g) for A ⊆ G

I The maximal set of objects sharing a given description:

d� = {g ∈ G |d v δ(g)} for d ∈ (D,u)



Standard FCA as a Pattern Structure (G , (D,u), δ)

Considering a standard formal context (G ,M, I ):

I G is the set of objects,
I (D,u) corresponds to ℘(M) where M is the set of attributes.
I δ(g) corresponds to the description of g in terms of attributes.

The Galois connection:

m1 m2 m3

g1 × ×
g2 × ×
g3 × ×
g4 × ×
g5 × × ×

I A� = ug∈Aδ(g) for A ⊆ G

I {g1, g2}
′

= g
′
1 ∩ g

′
2 = {m1,m2} ∩ {m1,m3} = {m1}

I d� = {g ∈ G |d v δ(g)} for d ∈ (D,u)

I {m1}
′

= {gi ∈ G |{m1} ⊆ g
′
i } = {g1, g2, g5}



From FCA to Pattern Structures

I A formal context (G ,M, I ) is based
on a set of objects G , a set of
attributes M, and a binary relation
I ⊆ G ×M.

I Two derivation operators are
defined as follows, ∀A ⊆ G ,B ⊆ M:

A′ = {m ∈ M|∀g ∈ A, (g ,m) ∈ I}

B′ = {g ∈ G |∀m ∈ B, (g ,m) ∈ I}
I A formal concept (A,B) verifies

A′ = B and A = B′.
I Formal concepts are partially

ordered w.r.t. inclusion of extents
(or dually of intents):

(A1,B1) ≤ (A2,B2) iff A1 ⊆ A2

I A pattern structure (G , (D,u), δ)
is based on a set of objects G , a
meet semi-lattice of object
descriptions (D,u), and a mapping
δ : G −→ D which associates a
description to each object.

I Two derivation operators are
defined as follows,
∀A ⊆ G , d ∈ (D,u):

A� = ug∈Aδ(g)

d� = {g ∈ G |d v δ(g)
I A formal concept (A, d) verifies

A� = d and A = d�

I Pattern concepts are partially
ordered w.r.t. inclusion of extents
(or dually inclusion of intents):

(A1, d1) ≤ (A2, d2) iff A1 ⊆ A2



Interval Pattern Structure

I Let D be a set of intervals with integer bounds (for simplicity),

I let u be a meet operator defined on D as the convex hull of intervals:

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)]
[4, 5] u [5, 5] = [4, 5]

[a1, b1] v [a2, b2] ⇐⇒ [a2, b2] ⊆ [a1, b1]
[4, 5] v [5, 5] ⇐⇒ [5, 5] ⊆ [4, 5]



Interval Pattern Structures for classifying a numerical
context

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

{g1, g2}� = ug∈{g1,g2}δ(g)

= 〈5, 7, 6〉 u 〈6, 8, 4〉
= 〈[5, 6], [7, 8], [4, 6]〉

〈[5, 6], [7, 8], [4, 6]〉� = {g ∈ G |〈[5, 6], [7, 8], [4, 6]〉 v δ(g)}
= {g1, g2, g5}

({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉) is a pattern concept



Interval pattern concept lattice

I Highest concepts: largest extents and smallest intents (but the largest intervals),

I Lowest concepts: smallest extents and largest intents (but the smallest intervals),

I Problem: efficient pattern mining.



Some applications of pattern structures

I Text mining with tree-based pattern structures.
Artuur Leeuwenberg, Aleksey Buzmakov, Yannick Toussaint and Amedeo Napoli Exploring
Pattern Structures of Syntactic Trees for Relation Extraction, in ICFCA 2015, LNAI 9113, 2015.

I Mining sequential data for analyzing patient trajectories (with
selection of interesting concepts using stability measure).
Aleksey Buzmakov, Elias Egho, Nicolas Jay, Sergei O. Kuznetsov, Amedeo Napoli and Chedy
Raïssi. On Mining Complex Sequential Data by Means of FCA and Pattern Structures, in
International Journal of General Systems (To be published), 2015.

I Information Retrieval and Recommendation.
Victor Codocedo, Ioanna Lykourentzou and Amedeo Napoli. A semantic approach to concept
lattice-based information retrieval, in Annals of Mathematics and Artificial Intelligence,
72:169–195, 2014.

I Discovery of Functional Dependencies.
Jaume Baixeries, Amedeo Napoli and Mehdi Kaytoue. Characterizing functional dependencies in
formal concept analysis with pattern structures, Annals of Mathematics and Artificial
Intelligence, 72:129-149, 2014.

I Biclustering and Triadic Analysis.
Mehdi Kaytoue, Sergei O. Kuznetsov, Juraj Macko and Amedeo Napoli. Biclustering meets
triadic concept analysis, Annals of Mathematics and Artificial Intelligence, 70(1-2):55-79, 2014.
Victor Codocedo and Amedeo Napoli. Lattice-based biclustering using Partition Pattern
Structures, in Proceedings of ECAI 2014, IOS Press, pages 213-218, 2014.



Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Heterogeneous Pattern Structures

I Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli and Petko Valtchev. Relational
Concept Analysis: Mining Concept Lattices From Multi-Relational Data, Annals of Mathematics
and Artificial Intelligence, 67(1):81–108, 2013.

I Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli and Petko Valtchev. Soundness
and Completeness of Relational Concept Analysis, in Proceedings of ICFCA 2013, LNAI 7880,
Springer, pages 228-243, 2013.

I Victor Codocedo and Amedeo Napoli. A proposition for combining pattern structures and
relational concept analysis, in Proceedings of ICFCA 2014, LNAI 8478, Springer, pages 96-111,
2014.
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Latent Semantic Indexing

I Let us consider a document-term matrix, i.e. the
representation of a set of documents w.r.t. a set of attributes
through a set of weights (representation of documents as
vectors in a vector space).

I Latent Semantic Indexing (LSI) is based on the Singular Value
Decomposition process of a matrix.

I LSI searches for the lower-rank approximation of the
document-term matrix.
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Latent Semantic Indexing
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g1 0.25 0.25 0.25 0 0 0 0 0 0 0.25 0 0
g2 0 0 0.16 0.16 0.16 0.16 0.16 0 0.16 0 0 0
g3 0 0.25 0 0.25 0.25 0 0 0.25 0 0 0 0
g4 0.3 0 0 0 0.3 0 0 0.3 0 0 0 0
g5 0 0 0 0.3 0 0.3 0.3 0 0 0 0 0
g6 0 0 0 0 0 0 0 0 0.5 0 0.5 0
g7 0 0 0 0 0 0 0 0 0 0.5 0.5 0
g8 0 0 0 0 0 0 0 0 0 0.3 0.3 0.3
g9 0 0 0 0 0 0 0 0 0 0 0.5 0.5

Table : Document-term matrix A.
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LSI and lower-rank approximation of a matrix

The SVD Process:

A(9×12) = U(9×9) · Σ(9×12) · V T
(12×12) (1)

Ã(9×12) = U(9×k) · Σ(k×k) · V T
(k×12) (with k � min(9, 12)) (2)

A ∼ Ã (3)

Ã · ÃT = U(9×k) · Σ(k×k) · V T
(k×12) · V(12×k) · ΣT

(k×k) · U
T
(k×9) (4)

Ã · ÃT = (U(9×k) · Σ(k×k)) · (U(9×k) · Σ(k×k))
T (5)
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Classifying documents

k1 k2
g1 0.118 -0.238
g2 0.046 -0.271
g3 0.014 -0.413
g4 0.014 -0.368
g5 0.008 -0.277
g6 0.519 0.002
g7 0.603 -0.017
g8 0.469 0.02
g9 0.588 0.092

Table : Documents in 2 LVs.
(k=2)

Figure : Graphical representation of documents as
points in a 2 dimensional LV space.



What about the semantics?

I Latent variables are abstractions.
I A given LV or a convex region in a LV-space can represent a

topic, but this lacks a proper characterization.
I It is not possible to introduce external domain knowledge.
I FCA provides a formal characterization of concepts through

the dual extent/intent descriptions.
I FCA allows the introduction of external knowledge sources

through object relations (RCA).
I FCA allows the analysis of complex data such as convex

regions in a vector space (interval pattern structures).



A possible scenario

Can we relate abstractions such as LVs to external domain
knowledge?

Documents	
   Terms	
  

LV	
  vectors	
   Synsets	
  

annotated with 

described by is a 

In fact, this scenario fits with the Relational Concept Analysis
process.



Relational Concept Analysis (RCA)

RCA describes an iterative scaling process to obtain a family of
related concept lattices from a relational context family.

k1 k2
g1 ×
g2 ×
g3 ×
g4 × ×
g5 ×
g6 ×
g7 ×
g8 × ×
g9 ×

Table : Formal Context
K1 = (G1, M1, I1)
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g1 ××× ×
g2 ××××× ×
g3 × ×× ×
g4 × × ×
g5 × ××
g6 × ×
g7 ××
g8 ×××
g9 ××

Table : Relational
Context aw = (G1, G2, Iaw)
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patient ×
laparoscopy × ×
scan ×
user ×
medicine ×
response ×
time ×
MRI ×
practice ×
complication ×
arthroscopy × ×
infection ×

Table : Formal Context
K2 = (G2, M2, I2)



Relational Concept Analysis (RCA)

I A relational context family (RCF) is composed by:
I A set of formal contexts K = {K1,K2}.
I A set of binary relations R = {aw}.

I A relational context is interpreted through the relation
aw : G1 → G2, where dom(aw) = G1 and ran(aw) = G2.

I A set of relational attributes is built w.r.t. (G1,M1, I1),
(G2,M2, I2), and the relation aw.

I The relational scaling process applied in (G1,M1, I1) assigns a
set of relational attributes to an object g ∈ G1 whenever
aw(g) ∩ extent(C) 6= ∅ (∃ quantifier), where C is a concept for
(G2,M2, I2).

I e.g. g1 is described by ∃aw.C iff aw(g1) ∩ extent(C) 6= ∅.



Relational Concept Lattice

Figure : Concept Lattice for Taxonomic annotations L2.

RCA - Relational Scaling

aw(g1) ∩ extent(C4) = {patient, user}

⇒ K(1)
1 = (G1, M1 ∪ {aw: C4}, I1 ∪ {(g1, aw: C4)})
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Relational Concept Analysis

I Formal concepts in K(1)
1 have intents which relate LV with

taxonomical annotations in K2.
I Nevertheless, K1 is a many-valued context. Convex regions in

a LV-space are better described with interval pattern
structures.

I An adaptation should be done when we apply relational scaling
in a many-valued formal context.
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Heterogeneous formal context

D Pr

k1 k2 aw
:
C1

aw
:
C2

aw
:
C3

aw
:
C4

aw
:
C5

aw
:
C6

aw
:
C7

g1 0.118 -0.238 × × × × ×
g2 0.046 -0.271 × × × ×
g3 0.014 -0.413 × × × ×
g4 0.014 -0.368 × × ×
g5 0.008 -0.277 × ×
g6 0.519 0.002 × × ×
g7 0.603 -0.017 × × ×
g8 0.469 0.02 × × ×
g9 0.588 0.092 × × ×

Table : Heterogeneous formal context.

Problems
I Objects are described by heterogeneous patterns mixing values

and binary attributes.
I It becomes necessary to define a proper pattern structure

which is able to deal with heterogeneous object descriptions.



Proposition

In the example:

I (G1, (D,u), δ) is an interval pattern structure of documents
described by convex regions in a LV space.

I K2 is a formal context of terms and taxonomical annotations
(Wordnet synsets).

I aw : G1 → G2 relates documents with a set of annotations
(terms).

I An heterogeneous pattern concept (hp-concept) (A, h)
describes in its intent a relation between a convex region in the
LV space and a set of taxonomical annotation.

I The set of all hp-concepts generates a set of “labeled clusters”
in the LV space.



Proposition

ACTIVITY	
  

PEOPLE	
  
ARTEFACT	
  

ILLNESS,	
  
SURGERY	
  

EVENT	
  
g5 

g2 

Figure : Labeled document clusters using association rules from the hp-lattice with
magnification on documents g2 and g5.
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Dealing with big and complex data

S.O. Kuznetsov and A. Napoli FCA Tutorial at IJCAI 2015



FCA: dealing with complex and big data

I Vertical dimensionality reduction (sampling): reduction of the
set of objects.

I Horizontal dimensionality reduction (attribute selection):
reduction of the set of attributes (dimensionality reduction can
be guided by domain knowledge).

I Factorization and Intelligent Sampling: computing “factors”
from large tables (LSA, LDA, LSI) for facilitating classification
and interpretation.

I Projections for building simplified descriptions and simplified
concept lattices.

I Iceberg lattices for considering concept lattice “level by level”
(w.r.t. support of intents).

I Stability measure for selecting interesting concepts in large
concept lattices.



Measures for selecting interesting concepts in “big data”

I Projections allow to consider only intents which can be of
interest, e.g. the longest subsequences in sequence
classification.

I The stability measure allows to consider and to rank the most
stable concepts:

Stab(C ) :=
|{x ∈ ℘(extent(C )) | x ′ = intent(C )}|

|℘(extent(C ))|

I Aleksey Buzmakov, Sergei O. Kuznetsov and Amedeo Napoli. Scalable Estimates of Stability, in
Proceedings of ICFCA 2014, LNAI 8478, Springer, pages 157-172, 2014.



Using pattern mining algorithms for building concept lattices

I Computing closed itemsets (FCIs) with e.g. Charm algorithm
(“vertical search”).

I Computing minimal generators (FGIs) with reverse pre-order
traversal.

I Associating closed itemsets and generators to form equivalence
classes.

I Computing precedence links between equivalence classes with
hypergraph techniques (transversals).

I Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, Robert Godin, Alix Boc and Vladimir
Makarenkov. A fast compound algorithm for mining generators, closed itemsets, and computing
links between equivalence classes, Annals of Mathematics and Artificial Intelligence,
70(1–2):81–105, 2014.
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FCA: dealing with complex and big data

I Anytime algorithms: compute a partial solution that is
completed w.r.t. remaining resources.

I Parallelization of algorithms for dealing with large and
distributed data.

I Combining numerical and symbolic methods: e.g. clustering,
SVM and FCA.

I Interactivity and Visualization: visualization and replay remain
essential in KDDK and in the interpretation of concept lattices.
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“Big Users” for Big Data Applications

I Mining Social Networks
I Preferences (“multidimensional mining”)
I Sentiment Analysis
I . . .
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Conclusion

I FCA is a well-founded mathematical theory equipped with
efficient algorithmic tools.

I FCA is a polymorphic process and addresses problems ranging
from knowledge discovery to knowledge representation and
reasoning, and pattern recognition as well.

I FCA has two important variations for dealing with complex
data: i.e. RCA and pattern structures (numbers, intervals,
sequences...).

I There is still room for many improvements, especially in
dealing with trees and graphs, in taking into account domain
knowledge, similarity, and in combining FCA with numerical
processes.
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Tools for building and visualizing concept lattices

I The Conexp program:
http://sourceforge.net/projects/conexp

I The Galicia Platform:
http://www.iro.umontreal.ca/~galicia/

I The Toscana platform:
http://tockit.sourceforge.net/toscanaj/index.html

I The Formal Concept Analysis Homepage:
http://www.upriss.org.uk/fca/fca.html
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Elements of bibliography on concept lattices

I Marc Barbut and Bernard Monjardet, Ordre et classification, Hachette, 1970.
I Introduction to Formal Concept Analysis. Radim Belohlavek, Palacky University, Olomouc,

http://phoenix.inf.upol.cz/esf/ucebni/formal.pdf
I Claudio Carpineto and Giovanni Romano, Concept Data Analysis: Theory and Applications, John

Wiley & Sons, 2004.
I Finite Ordered Sets: Concepts, Results and Uses. Nathalie Caspard, Bruno Leclerc and Bernard

Monjardet, Cambridge University Press, 2012.
I Bernhard Ganter and Rudolf Wille, Formal Concept Analysis, Springer, 1999.
I Applied Lattice Theory: Formal Concept Analysis. Bernhard Ganter and Rudolf Wille,

www.math.tu-dresden.de/~ganter/psfiles/concept.ps
I Formal Concept Analysis, Foundations and Applications. Bernhard Ganter, Gerd Stumme and

Rudolf Wille editors, Lecture Notes in Computer Science 3626, Springer, 2005.
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