
SScchhooooll ooff CCoommppuutteerr SScciieennccee

A New Look at the System,
Algorithm and Theory
Foundations of Distributed
Machine Learning

1Eric P. Xing and 2Qirong Ho

1Carnegie Mellon University

2Institute for Infocomm Research, A*STAR

IJCAI 15 © Eric Xing @ CMU, 2015

Acknowledgements:
Wei Dai, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Jinliang Wei, Pengtao Xie, Xun Zheng

Yaoliang Yu, James Cipar, Henggang Cui,
and, Phil Gibbons, Greg Ganger, Garth Gibson

1

Trees Falling in the Forest

●  Nobody knows what’s in data unless it has been
processed and analyzed

●  Need a scalable way to automatically search, digest, index, and

understand contents

Data ≠ Knowledge

"If a tree falls in a forest and no one is around to hear it, does it
make a sound?" --- George Berkeley

IJCAI 15 © Eric Xing @ CMU, 2015 2

How To Understand Big Data?

IJCAI 15 © Eric Xing @ CMU, 2015 3

Machine Learning !!!

IJCAI 15 © Eric Xing @ CMU, 2015 4

The Scalability Challenge

Pathetic

Good!

Pr
oc

es
si

ng

po
w

er
/s

pe
ed

Number of “machines”

IJCAI 15 © Eric Xing @ CMU, 2015 5

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 	
 	
 	

	
 	
 doOtherThings()	

}	

An ML Program

~✓t+1
=

~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data

This computation needs to be scaled up !

~✓t+1
= g(~✓t, �f

~✓(D))

Solved by an iterative convergent algorithm

IJCAI 15 © Eric Xing @ CMU, 2015 6

Challenge 1 –
Massive Data Scale

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine

Source: Cisco Global Cloud
Index

Source: The Connectivist

Δ θ(D)

IJCAI 15 © Eric Xing @ CMU, 2015 7

Challenge 2 –
Gigantic Model Size

Maybe Big Data needs Big Models to extract understanding?
But models with >1 trillion params also won’t fit!

Source: University of
Bonn

Δ θ(D)

IJCAI 15 © Eric Xing @ CMU, 2015 8

Classic algorithms used for decades

K-
means

Logistic
regression

Decision trees Naive Bayes

Challenge 3 – Inadequate support
for newer methods

IJCAI 15 © Eric Xing @ CMU, 2015 9

Google Brain
Deep Learning

for images:
1~10 Billion

model parameters

Topic Models
for news article

analysis:
Up to 1 Trillion

model
parameters

 Collaborative filtering
for Video recommendation:

1~10 Billion
 model

parameters

Multi-task Regression
 for simplest whole-

genome analysis:
100 million ~ 1 Billion

model
parameters

Growing Need for Big and
Contemporary ML Programs

IJCAI 15 © Eric Xing @ CMU, 2015 10

The Need for Distributed ML

l  We had developed
l  a highly cost-effective model (MMTM [Ho et al., 2012]),
l  two generations of highly efficient algorithms

 (δ-subsampling Gibbs [Ho et al., 2012], SVI [Yin et al., 2013])
l  and highly specialized implementations

à State-of-the-art results: 1M node networks with 100 roles in a few hours, on
just one machine, 2-3 order’s of magnitudes speed-up

l  But when we tried to do 10K roles in a 100M-node network:
l  Memory: 100M * 10K = 1 trillion latent states = 4TB of RAM
l  Computation: 10K+ hrs on one machine, i.e. yrs!
l  Attempt with Hadoop failed while in FB (see later) !!!

Say we want to analyze 10K
roles in a 100M-node network,
using a mixed membership
model?

IJCAI 15 © Eric Xing @ CMU, 2015 11

Many Open Questions:

l  When is Big Data useful?

l  Are Big Models useful?

-- Both positive and negative answers exist …

l  Inference algorithms, or inference systems?

l  Theoretical guarantees, or empirical performance?

IJCAI 15 © Eric Xing @ CMU, 2015 12

Current Solutions to Scalable ML
l  Platforms for general-purpose ML

l  Hadoop, Spark, GraphLab, Petuum, …
l  Allow others to write new ML programs

l  Implementations of specific ML algorithms
l  YahooLDA, Vowpal Wabbit, Caffe, Torch, …
l  Provide a finely-tuned implementation of one (or a few) ML algorithms

l  Why this tutorial?
l  At first glance, ML problems seem radically different
l  We introduce a formal picture of ML to “bring order to the zoo”
l  We expose ML mathematical properties to be explored and later exploited
l  We note that many ML problems can be solved by a few “workhorse” algorithms
l  We explain how to design systems around these insights – thus achieving

scalability, with both speed and solution quality guarantees
l  We provide theoretical guarantees for the system designs, and lay out roadmap

for further analysis

IJCAI 15 © Eric Xing @ CMU, 2015 13

SScchhooooll ooff CCoommppuutteerr SScciieennccee

Overview of Modern ML

IJCAI 15 © Eric Xing @ CMU, 2015 14

A “Classification” of ML Models
and Tools

l  An ML program consists of:
l  A mathematical “ML model” (from one of many families)…
l  … which is solved by an “ML algorithm” (from one of a few types)

IJCAI 15 © Eric Xing @ CMU, 2015

  Stochastic Versions of the above Algorithms

  MC and MCMC   Optimization   Matrix and
Spectral

Algorithms

  Nonparametric
Bayesian Models

  Graphical Models

  Sparse Structured
Input/Output
Regression

  Sparse Coding   Spectral/Matrix
Methods

  Regularized
Bayesian Methods

  Deep Learning   Large-Margin

Machine Learning Model Families

Machine Learning Algorithm Families

15

A “Classification” of ML Models
and Tools

l  We can view ML programs as either
l  Probabilistic programs
l  Optimization programs

IJCAI 15 © Eric Xing @ CMU, 2015

Probabilistic Programs Optimization Programs

16

Key building blocks
of an ML program

l  ML program: f(θ,D) = L(θ,D) + r(θ)
l  Objective or Loss function: L(θ,D)

l  θ = model, D = data
l  Common examples:

l  Least squares difference between predicted value and data
l  Log-likelihood of data

l  Regularization / Prior / Structural Knowledge: r(θ)
l  Common examples:

l  L2 regularization on θ to prevent overfitting
l  L1 regularization on θ to obtain sparse solution
l  (log of) Gaussian or Laplace priors over θ
l  (log of) Dirichlet prior over θ for smoothing

l  Algorithm to solve for model given the data (cont’ next slide)

IJCAI 15 © Eric Xing @ CMU, 2015 17

Iterative-convergent view of ML

l  ML models solved via iterative-convergent ML algorithms
l  Iterative-convergent algorithms repeat until θ is stationary. Examples:

l  Probabilistic programs: MC, MCMC, Variational Inference
l  Optimization programs: Stochastic gradient descent, ADMM, Proximal methods, Coordinate descent

IJCAI 15 © Eric Xing @ CMU, 2015

New Model = Old Model +
Update(Data)

Δ θ(D) Δ θ(D)

18

Optimization Example:
Lasso Regression

l  Data, Model
l  D = {feature matrix X, response vector y}
l  θ = {parameter vector β)

l  Objective L(θ,D)
l  Least-squares difference between y and Xβ:

l  Regularization r(θ)
l  L1 penalty on β to encourage sparsity:
l  λ is a tuning parameter

l  Algorithms
l  Coordinate Descent
l  Stochastic Proximal Gradient Descent

IJCAI 15 © Eric Xing @ CMU, 2015 19

Optimization Example:
Lasso Regression

IJCAI 15 © Eric Xing @ CMU, 2015

Feature Matrix X
(N samples by D features)

✕✕ =

Response Vector y
(N samples)

Parameter Vector β
(D features)

Lasso outputs sparse
parameter vectors (few non-

zeros)

=> Easily find most
important features

Applications:
Genetic Assays, Online Advertising

20

Optimization Example:
Lasso Regression

IJCAI 15 © Eric Xing @ CMU, 2015

Model (Parameter Vector)
Data (Feature + Response Matrices)

Update (CD algo)

21

Probabilistic Example:
Topic Models

l  Objective L(θ,D)
l  Log-likelihood of D = {document words xij} given unknown θ = {document word

topic indicators zij, doc-topic distributions δi, topic-word distributions Bk}:

l  Prior r(θ)
l  Dirichlet prior on θ = {doc-topic, word-topic distributions}

l  α, β are “hyperparameters” that control the Dirichet prior’s strength

l  Algorithm
l  Collapsed Gibbs Sampling

IJCAI 15 © Eric Xing @ CMU, 2015 22

Probabilistic Example:
Topic Models

IJCAI 15 © Eric Xing @ CMU, 2015

Model (Topics) = Bk Data (Docs) = xij

Applications: Natural Language Processing, Information Retrieval

Update (Collapsed Gibbs sampling)

23

 ML Computation vs. Classical
Computing Programs

ML Program:
optimization-centric and
iterative convergent

Traditional Program:
operation-centric and
deterministic

IJCAI 15 © Eric Xing @ CMU, 2015 24

 Traditional Data Processing
needs operational correctness …

Example: Merge sort

Sorting
error: 2
after 5

Error persists and is
not corrected

IJCAI 15 © Eric Xing @ CMU, 2015 25

… but ML Algorithms
can Self-heal

IJCAI 15 © Eric Xing @ CMU, 2015 26

l  ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution

l  Error tolerance: often robust against limited
 errors in intermediate calculations

l  Dynamic structural dependency:
 changing correlations between model parameters
 critical to efficient parallelization

l  Non-uniform convergence: parameters
 can converge in very different number of steps

l  Whereas traditional programs are transaction-centric, thus only
guaranteed by atomic correctness at every step

More Intrinsic Properties of ML
Programs

IJCAI 15 © Eric Xing @ CMU, 2015 27

Why come up with
an ML classification?

l  An ML classification helps to solve ML algorithm challenges
systematically
l  No need to invent new algorithms for each new ML model or variant
l  Instead, re-use a smaller number of “workhorse” algorithms (engines) to solve

entire classes of models
l  For each new ML model, determine which ML class it falls under
l  Then apply the most appropriate workhorse algorithm for that class

l  Next tutorial section: Distributed ML Algorithms
l  We present a number of “workhorse” algorithms:

l  Basic form
l  Which units can be parallelized
l  What risks are incurred by parallelization (e.g. error or non-convergence)
l  Examples of scalable realizations (software)

IJCAI 15 © Eric Xing @ CMU, 2015 28

SScchhooooll ooff CCoommppuutteerr SScciieennccee

Distributed ML Algorithms

IJCAI 15 © Eric Xing @ CMU, 2015 29

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 	
 	
 	

	
 	
 doOtherThings()	

}	

An ML Program

~✓t+1
=

~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data

This computation needs to be parallelized!

~✓t+1
= g(~✓t, �f

~✓(D))

Solved by an iterative convergent algorithm

IJCAI 15 © Eric Xing @ CMU, 2015 30

Challenge
l  Optimization programs:

�

A huge number of parameters
(e.g.) J = 1B

X

yN

M

M=

�
NX

i=1

h d

d✓1
, . . . ,

d

d✓M

i
f(xi,yi;

~✓)

A huge volume of data
(e.g.) N = 1B

IJCAI 15 © Eric Xing @ CMU, 2015 31

Challenge
l  Probabilistic programs

topic doc
(~ 1B)

topic

word (~ 1M)

topic
(~ 1M)

IJCAI 15 © Eric Xing @ CMU, 2015 32

Parallelization Strategies

IJCAI 15 © Eric Xing @ CMU, 2015

Data Parallel

New Model = Old Model +
Update(Data)

Δ θ(D)

33

Parallelization Strategies

Data Parallel Model Parallel

New Model = Old Model +
Update(Data)

Δ θ(D) Δ θ(D)

IJCAI 15 © Eric Xing @ CMU, 2015 34

Outline:
Optimization & MCMC Algorithms

l  Optimization Algorithms
l  Stochastic gradient descent
l  Coordinate descent
l  Proximal gradient methods

l  ISTA, FASTA, Smoothing proximal gradient

l  ADMM

l  Markov Chain Monte Carlo Algorithms
l  Auxiliary Variable methods
l  Embarrassingly Parallel MCMC
l  Parallel Gibbs Sampling

l  Data parallel
l  Model parallel

IJCAI 15 © Eric Xing @ CMU, 2015 35

Example Optimization Program:
Sparse Linear Regression

)(
2
1min 2

2
βXβy

β
Ω+− λ

Data fitting Regularization

Data fitting part:
 - find β that fits into the data
 - Squared loss, logistic loss, hinge loss, etc

Regularization part:

 - induces sparsity in β.
 - incorporates structured information into the model

© Eric Xing @ CMU, 2015 IJCAI 15 36

Example Optimization Program:
Sparse Linear Regression

)(
2
1min 2

2
βXβy

β
Ω+− λ

Examples of regularization :)(βΩ

∑
=

=Ω
J

j
jlasso

1
)(ββ

∑
∈

=Ω
G

group
g

gββ
2

)(

)(βtreeΩ

)(βoverlapΩ

∑
∈

=
g

gβ
j

j
2

2
)(βwhere

Sparsity

Structured sparsity
(sparsity + structured information)

© Eric Xing @ CMU, 2015 IJCAI 15 37

Algorithm I:
Stochastic Gradient Descent

l  Consider an optimization problem:

l  Classical gradient descent:

l  Stochastic gradient descent:

l  Pick a random sample di

l  Update parameters based on noisy approximation of the true gradient

min

x
E{f(x, d)}

x(t+1) x(t) − �
1

n

nX

i=1

rxf(x
(t), di)

x(t+1) x(t) − �rxf(x
(t), di)

IJCAI 15 © Eric Xing @ CMU, 2015 38

l  SGD converges almost surely to
a global optimal for convex problems

l  Traditional SGD compute gradients based on a single
sample

l  Mini-batch version computes gradients based on multiple
samples
l  Reduce variance in gradients due to multiple samples
l  Multiple samples => represent as multiple vectors => use vector

computation => speedup in computing gradients

Stochastic Gradient Descent

IJCAI 15 © Eric Xing @ CMU, 2015 39

Parallel Stochastic Gradient
Descent

l  Parallel SGD: Partition data to different workers; all workers
update full parameter vector

l  Parallel SGD [Zinkevich et al., 2010]

l  PSGD runs SGD on local copy of params in each machine

Input
Data

Input
Data

Input
Data

split Update local copy
of ALL params

Update local copy
of ALL params

aggregate

Update ALL
params

Input
Data

Input
Data

Input
Data

IJCAI 15 © Eric Xing @ CMU, 2015 40

Hogwild!: Lock-free approach to
PSGD [Recht et al., 2011]

l  Goal is to minimize a function in the form of

l  e denotes a small subset of parameter indices
l  xe denotes parameter values indexed by xe

l  Key observation:
l  Cost functions of many ML problems can be represented by f(x)
l  In SOME ML problems, f(x) is sparse. In other words, |E| and n are large but fe is

applied only a small number of parameters in x

f(x) =
X

e2E

fe(xe)

© Eric Xing @ CMU, 2015 IJCAI 15 41

Hogwild!: Lock-free approach to
PSGD [Recht et al., 2011]

l  Example:
l  Sparse SVM

l  z is input vector, and y is a label; (z,y) is an elements of E
l  Assume that zα are sparse

l  Matrix Completion

l  Input A matrix is sparse

l  Graph cuts

l  W is a sparse similarity matrix, encoding a graph

min

x

X

↵2E

max(1− y↵x
T z↵, 0) + � kxk22

min

W,H

X

(u,v)2E

(Auv −WuH
T
v)

2
+ �1 kWk2F + �2 kHk2F

min

x

X

(u,v)2E

wuv kxu − xvk1 subject to xv 2 SD, v = 1, . . . , n

IJCAI 15 © Eric Xing @ CMU, 2015 42

Hogwild! Algorithm [Recht et al., 2011]
l  Hogwild! algorithm: iterate in parallel for each core

l  Sample e uniformly at random from E
l  Read current parameter xe; evaluate gradient of function fe

l  Sample uniformly at random a coordinate v from subset e
l  Perform SGD on coordinate v with small constant step size

l  Advantages
l  Atomically update single coordinate, no mem-locking
l  Takes advantage of sparsity in ML problems
l  Near-linear speedup on various ML problems, on single machine

l  Excellent on single machine, less ideal for distributed
l  Atomic update on multi-machine challenging to implement; inefficient and slow
l  Delay among machines requires explicit control… why? (see next slide)

IJCAI 15 © Eric Xing @ CMU, 2015 43

The cost of uncontrolled delay –
slower convergence [Dai et al. 2015]

l  Theorem: Given lipschitz objective ft and step size ηt,

l  where
l  Where L is a lipschitz constant, and εm and εv are the mean and variance of the

delay

l  Intuition: distance between current estimate and optimal value
decreases exponentially with more iterations
l  But high variance in the delay εv incurs exponential penalty!

l  Distributed systems exhibit much higher delay variance,
compared to single machine

IJCAI 15 © Eric Xing @ CMU, 2015 44

The cost of uncontrolled delay –
unstable convergence [Dai et al. 2015]

l  Theorem: the variance in the parameter estimate is

l  Where
l  and represents 5th order or higher terms, as a function of the delay εt

l  Intuition: variance of the parameter estimate decreases near
the optimum
l  But delay εt increases parameter variance => instability during convergence

l  Distributed systems have much higher average delay,
compared to single machine

IJCAI 15 © Eric Xing @ CMU, 2015 45

Parallel SGD with
Key-Value Stores

l  We can parallelize SGD via
l  Distributed key-value store to share parameters
l  Synchronization scheme to synchronize parameters

l  Shared key-value store provides easy interface to read/write
shared parameters

l  Synchronization scheme determines how parameters are
shared among multiple workers
l  Bulk synchronous parallel (e.g., Hadoop)
l  Asynchronous parallel [Ahmed et al., 2012, Li et al., 2014]

l  Stale synchronous parallel [Ho et al., 2013, Dai et al., 2015]

IJCAI 15 © Eric Xing @ CMU, 2015 46

Parallel SGD with
Bounded Async KV-store

l  Stale synchronous parallel (SSP) is a synchronization model
with bounded staleness – “bounded async”

l  Fastest and the slowest workers are ≤s clocks apart

IJCAI 15 © Eric Xing @ CMU, 2015 47

Example KV-Store Program:
Lasso

l  Lasso example: want to optimize

l  Put β in KV-store to share among all workers
l  Step 1: SGD: each worker draws subset of samples Xi

l  Compute gradient for each term ||yi–Xiβ||2 with respect to β; update β with gradient

l  Step 2: Proximal operator: perform soft thresholding on β

l  Can be done at workers, or at the key-value store itself

l  Bounded Asynchronous synchronization allows fast read/write
to β, even over slow or unreliable networks

© Eric Xing @ CMU, 2015 IJCAI 15 48

Bounded Async KV-store:
Faster and better convergence

IJCAI 15 © Eric Xing @ CMU, 2015 49

Algorithm II:
Coordinate Descent

Update each regression coefficient in a cyclic manner

1st iteration

1β 2β 3β Jβ
2st iteration

1β 2β 3β Jβ

l  Pros and cons
l  Unlike SGD, CD does not involve learning rate
l  If CD can be used for a model, it is often comparable to the state-of-the-art

(e.g. lasso, group lasso)
l  However, as sample size increases, time for each iteration also increases

IJCAI 15 © Eric Xing @ CMU, 2015 50

Example: Coordinate Descent for
Lasso

l  We optimize our objective with respect to βj fixing other
coefficients

l  We iterate over each coefficient until our objective converges
l  It is very efficient for solving lasso problem
l  No step size involved in lasso coordinate descent

∑+−=
j

jβλ
2

22
1minˆ Xβyβ

β

© Eric Xing @ CMU, 2015 IJCAI 15 51

Example: Coordinate Descent for
Lasso

l  Subgradient of our objective with respect to βj is:

∑+−=
j

jβλ
2

22
1minˆ Xβyβ

β

j
T
j tλ+−−)(Xβyx

if

Otherwise

)(jj signt β=

[]1,1−∈jt
0≠jβSubgradient of

L1 norm

© Eric Xing @ CMU, 2015 IJCAI 15 52

Example: Coordinate Descent for
Lasso

l  Set a subgradient to zero:

l  Assuming that , we can derive update rule:

∑+−=
j

jβλ
2

22
1minˆ Xβyβ

β

0)(=+−− j
T
j tλXβyx

1=j
T
j
xx

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
≠

λββ),(
jl

ll
T
jj xS yx

Soft thresholding

+−=))((),(λλ xxsignxS

Standardization

IJCAI 15 © Eric Xing @ CMU, 2015 53

Example: Block Coordinate
Descent for Group Lasso

l  Set it to zero:

l  In a similar fashion, we can derive update rule for group g

∑+−=
j

jβλ
2

22
1minˆ Xβyβ

β

gXβyx ∈∀=+−− ju j
T
j ,0)(λ

Iterate over each
group of coefficients

© Eric Xing @ CMU, 2015 IJCAI 15 54

Parallel Coordinate Descent
[Bradley et al. 2011]

l  Shotgun, a parallel coordinate descent algorithm
l  Choose parameters to update at random
l  Update the selected parameters in parallel
l  Iterate until convergence

l  When features are nearly independent, Shotgun scales
almost linearly
l  Shotgun scales linearly up to workers, where ρ is spectral radius of ATA
l  For uncorrelated features, ρ=1; for exactly correlated features ρ=d
l  No parallelism if features are exactly correlated!

P  d

2⇢

IJCAI 15 © Eric Xing @ CMU, 2015 55

Intuitions for Parallel Coordinate
Descent

l  Concurrent updates of parameters are useful when features
are uncorrelated

l  Updating parameters for correlated features may slow down

convergence, or diverge parallel CD in the worst case
l  To avoid updates of parameters for correlated features, block-greedy CD has

been proposed

IJCAI 15 © Eric Xing @ CMU, 2015 56

Uncorrelated features Correlated features

Source:
[Bradley et al., 2011]

Block-greedy Coordinate Descent
[Scherrer et al., 2012]

l  Block-greedy coordinate descent generalizes various parallel
CD strategies
l  e.g. Greedy-CD, Shotgun, Randomized-CD

l  Alg: partition p params into B blocks; iterate:
l  Randomly select P blocks
l  Greedily select one coordinate per P blocks
l  Update each selected coordinate

l  Sublinear convergence O(1/k) for separable regularizer r :

l  Big-O constant depends on the maximal correlation among the B blocks

l  Hence greedily cluster features (blocks) to reduce correlation

min

x

X
i
fi(x) + r(xi)

IJCAI 15 © Eric Xing @ CMU, 2015 57

Parallel Coordinate Descent with
Dynamic Scheduler
[Lee et al., 2014]

l  STRADS (STRucture-Aware Dynamic Scheduler) allows
scheduling of concurrent CD updates
l  STRADS is a general scheduler for ML problems
l  Applicable to CD, and other ML algorithms such as Gibbs sampling

l  STRADS improves CD performance via
l  Dependency checking

l  Update parameters which are nearly independent => small parallelization error

l  Priority-based updates
l  More frequently update those parameters which decrease objective function faster

IJCAI 15 © Eric Xing @ CMU, 2015 58

Example Scheduler Program:
Lasso

l  Schedule step:
l  Prioritization: choose next variables βj to update, with probability proportional to

their historical rate of change

l  Dependency checking: do not update βj, βk in parallel if feature dimensions j
and k are correlated

l  Update step:
l  For all βj chosen in Schedule step, in parallel, perform coordinate descent update

l  Repeat from Schedule step
IJCAI 15 © Eric Xing @ CMU, 2015 59

l  Priority-based scheduling converges faster than Shotgun
(random) scheduling

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

Comparison:
priority vs. random-scheduling

IJCAI 15 © Eric Xing @ CMU, 2015 60

Priority-based scheduling +
dep. checker

be
tte

r Shotgun scheduling [Bradley et al. 2011]

Advanced
Optimization Techniques

l  What if simple methods like SPG, CD are not adequate?

l  Advanced techniques at hand
l  Complex regularizer: PG
l  Complex loss: SPG
l  Overlapping loss/regularizer: ADMM

l  How to parallelize them? Must understand math behind
algorithms
l  Which terms should be computed at server
l  Which terms can be distributed to clients
l  …

IJCAI 15 © Eric Xing @ CMU, 2015 61

When Constraints Are Complex:
 -- Algorithm III: Proximal Gradient (a.k.a. ISTA)

l  f: loss term, smooth (continuously differentiable)
l  g: regularizer, non-differentiable (e.g. 1-norm)

Proximal gradient
  g represents some simple function

  e.g., 1-norm, constraint C, etc.

Projected gradient
  g represents some constraint

min

w
f(w) + g(w)

g(w) = ◆C(w) =

(
0, w 2 C

1, otherwise

w w − ⌘rf(w)

w argmin

z

1
2⌘kw − zk2 + ◆C(z)

= argmin

z2C

1
2kw − zk2

w w − ⌘rf(w) gradient

w argmin

z

1
2⌘kw − zk2 + g(z)

| {z }
proximal map

IJCAI 15 © Eric Xing @ CMU, 2015 62

Algorithm III:
Proximal Gradient (a.k.a. ISTA)

l  PG hinges on the proximal map [Moreau, 1965]:

l  Treated as black-box in PG
l  Need proximal map efficiently computable, better closed-form

l  True when g is separable and “simple”, e.g. 1-norm (separable in each
coordinate), non-overlapping group norm, etc.

l  Can be demanding if g = g1+g2, but vars in g1, g2 overlap
l  [Yu, 2013] gave sufficient conditions for when g = g1+g2 can

be easily handled:

l  Useful when and available in closed-forms
l  E.g. fused lasso (Friedman et al.'07):

P⌘
g(w) = argmin

z

1
2⌘kw − zk2 + g(z)

P⌘
g1 P⌘

g2

P⌘
g1+g2(w) = P⌘

g1

⇣
P⌘
g2(w)

⌘

P⌘
k·k1+k·ktv

(w) = P⌘
k·k1

⇣
P⌘
k·ktv

(w)

⌘

© Eric Xing @ CMU, 2015 IJCAI 15 63

Extensions to Proximal Gradient
l  Bregman: replace the quadratic with bregman divergence

l  recovers the usual PG; entropic:
l  Can be beneficial if d “aligns” well with g (e.g., leading to closed-form sol.)
l  Same theoretical guarantee (Tseng’10)

l  Subgradient: replace grad with subgradient

l  Removes differentiable assump. on f
l  Need diminishing step size
l  Slower convergence (Duchi & Singer’09)

w

t+1 argmin

w
hw, ⌘rf(wt

)i+ D(wkwt
)| {z }

d(w)−d(wt)−hw−wk,rd(wk)i

+g(w)

d(w) =

1
2kwk2 d(w) =

P
i wi logwi � wi

w

t+1 argmin

w
hw, ⌘t@f(w

t
)i+D(wkwt

) + g(w)

⌘t ! 0

O(

1p
t
)

© Eric Xing @ CMU, 2015 IJCAI 15 64

Accelerated PG (a.k.a. FISTA)
[Beck & Teboulle, 2009; Nesterov, 2013; Tseng, 2008]

l  PG convergence rate
l  Can be boosted to

l  Same Lipschitz gradient assumption on f; similar per-step complexity!
l  Lots of follow-up work to the papers cited above

P⌘
g(w) := argmin

z

1
2⌘kw − zk22 + g(z)

Proximal Gradient Accelerated Proximal Gradient

O(1/(⌘t))

O(1/(⌘t2))

v

t w

t − ⌘rf(wt
)

u

t P⌘
g(v

t
)

w

t+1 u

t
+ 0|{z}

no

· (ut − u

t�1
)| {z }

momentum

v

t w

t − ⌘rf(wt
)

u

t P⌘
g(v

t
)

w

t+1 u

t
+

t− 1

t+ 2| {z }
⇡1

(u

t − u

t−1
)| {z }

momentum

© Eric Xing @ CMU, 2015 IJCAI 15 65

Parallel (Accelerated) PG
l  Bulk Synchronous Parallel Accelerated PG (exact)

l  [Chen and Ozdaglar, 2012]

l  Asynchronous Parallel (non-accelerated) PG (inexact)
l  [Li et al., 2014] Parameter Server

l  General strategy:
1.  Compute gradients on workers
2.  Aggregate gradients on servers
3.  Compute proximal operator on servers
4.  Compute momentum on servers
5.  Send result wt+1 to workers and repeat

l  Can apply Hogwild-style asynchronous updates to non-
accelerated PG, for empirical speedup
l  Open question: what about accelerated PG? What happens theoretically and

empirically to accelerated momentum under asynchrony?

v

t w

t − ⌘rf(wt
)

u

t P⌘
g(v

t
)

w

t+1 u

t
+

t− 1

t+ 2| {z }
⇡1

(u

t − u

t−1
)| {z }

momentum

IJCAI 15 © Eric Xing @ CMU, 2015 66

When Objective Is Not Smooth:
 -- Moreau Envelope Smoothing

l  So far need f to have Lipschitz cont grad, obtained O(1/t2)
l  What if not ?
l  Can use subgradient, with diminishing step size O(1/sqrt(t))

l  Huge gap !!

l  Smoothing comes into rescue, if f itself is H-Lipschitz cont
l  Approx f with something nicer, like Taylor expansion in calculus 101

l  Replace f with its Moreau envelope function

l  f(w) = |w|, envelope is Huber’s func (blue curve)
l  Minimizer gives the proximal map (red curve)

Prop.

M⌘
f

P⌘
f

M⌘
f (w) := min

z

1
2⌘kw − zk22 + f(z)

8w , 0  f(w)−M⌘
f (w)  ⌘H2/2

© Eric Xing @ CMU, 2015 IJCAI 15 67

Smoothing Proximal Gradient
[Chen et al., 2012]

l  Use Moreau envelope as smooth approximation
l  Rich and long history in convex analysis [Moreau, 1965; Attouch, 1984]

l  Inspired by proximal point alg [Martinet, 1970; Rockafellar, 1976]
l  Proximal point alg = PG, when

l  Rediscovered in [Nesterov, 2005], lead to SPG [Chen et al., 2012]

l  With , SPG converges at

l  Improves subgradient
l  Requires both efficient and

f ⌘ 0

Smoothing Proximal Gradient
original

approx.

P⌘
f P⌘

g

min

w
f(w) + g(w)

⇡ min

w
M⌘

f (w) + g(w)

v

t

=P⌘
f (w

t)
z }| {
w

t − ⌘rM⌘
f (w

t
)

u

t P⌘
g(v

t
)

w

t+1 u

t
+

t− 1

t+ 2

(u

t − u

t�1
)| {z }

momentum

⌘ = O(1/t)

O(1/(⌘t2)) = O(1/t)
O(1/

p
t)

IJCAI 15 © Eric Xing @ CMU, 2015 68

Parallel SPG?
l  No known work yet
l  Possible strategy:

1.  Compute smoothed gradients on workers
2.  Aggregate smoothed gradients on servers
3.  Compute proximal operator on servers
4.  Compute momentum on servers
5.  Send result wt+1 to workers and repeat

l  The above strategy is exact under Bulk Synchronous Parallel
(just like accelerated PG).
l  Not clear how asynchronous updates impact smoothing+momentum
l  Open research topic

v

t

=P⌘
f (w

t)
z }| {
w

t − ⌘rM⌘
f (w

t
)

u

t P⌘
g(v

t
)

w

t+1 u

t
+

t− 1

t+ 2

(u

t − u

t�1
)| {z }

momentum

IJCAI 15 © Eric Xing @ CMU, 2015 69

When Variables Are Coupled:
 -- Algorithm IV: ADMM

l  Numerically challenging because
l  Function f or g nonsmooth or constrained (i.e., can take value)
l  Linear constraint couples the variables w and z
l  Large scale, interior point methods NA

l  Naively alternating x and z does not work
l  Min w2 s.t. w + z = 1; optimum clearly is w = 0
l  Start with say w = 1 à z = 0 à w = 1 à z = 0 …

l  However, without coupling, can solve separately w and z
l  Idea: try to decouple vars in the constraint!

1

 uncoupled  coupled

where

Canonical form:
min

w,z
f(w) + g(z), s.t. Aw +Bz = c,

w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq

© Eric Xing @ CMU, 2015 IJCAI 15 70

Example: Empirical Risk
Minimization (ERM)

l  Each i corresponds to a training point (xi, yi)
l  Loss fi measures the fitness of the model parameter w

l  least squares:
l  support vector machines:
l  boosting:
l  logistic regression:

l  g is the regularization function, e.g. or
l  Vars coupled in obj, but not in constraint (none)

l  Reformulate: transfer coupling from obj to constraint
l  Arrive at canonical form, allow unified treatment later

min

w
g(w) +

nX

i=1

fi(w)

�nkwk22 �nkwk1

fi(w) = (yi � w>xi)
2

fi(w) = (1� yiw
>xi)+

fi(w) = exp(�yiw
>xi)

fi(w) = log(1 + exp(�yiw
>xi))

 coupled

© Eric Xing @ CMU, 2015 IJCAI 15 71

How to: variable duplication
l  Duplicate variables to achieve canonical form

l  Global consensus constraint:

l  All wi must (eventually) agree

l  Downside: many extra variables, increase problem size
l  Implicitly maintain duplicated variables

min

w
g(w) +

nX

i=1

fi(w)

8i, wi = z

min

v,z
g(z) +

X
i
fi(wi)

| {z }
f(v)

, s.t. wi = z, 8i| {z }
v�[I,...,I]>z=0

v = [w1, . . . , wn]
>

© Eric Xing @ CMU, 2015 IJCAI 15 72

Augmented Lagrangian

l  Intro Lagrangian multiplier to decouple variables

l  : augmented Lagrangian
l  More complicated min-max problem, but no coupling constraints
Lµ

min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz− c) +

µ
2 kAw +Bz− ck22| {z }

Lµ(w,z;�)

�

where

Canonical form: min

w,z
f(w) + g(z), s.t. Aw +Bz = c,

w 2 Rm, z 2 Rp, A : Rm ! Rq, B : Rp ! Rq, c 2 Rq

© Eric Xing @ CMU, 2015 IJCAI 15 73

Algorithm IV:
ADMM

l  Fix dual , block coordinate descent on primal w, z

l  Fix primal w, z, gradient ascent on dual

l  Step size can be large, e.g.
l  Usually rescale to remove

⌘ ⌘ = µ

⌘

min

w,z
max

�
f(w) + g(z) + �>

(Aw +Bz− c) +

µ
2 kAw +Bz− ck22| {z }

Lµ(w,z;�)

�t+1 �t
+ ⌘(Awt+1

+Bz

t+1 − c)

w

t+1 argmin

w
Lµ(w, zt;�t

)

z

t+1 argmin

z
Lµ(w

t+1, z;�t
)

⌘ f(w) +

µ
2 kAw +Bz

t − c+ �t/µk2

⌘ g(z) + µ
2 kAw

t+1
+Bz− c+ �t/µk2

�

�

� �/⌘

IJCAI 15 © Eric Xing @ CMU, 2015 74

Row partition (data parallel)

l  each i corresponds to a (block of) training data Ai

l  all summands fi share the same global variable z
l  all ERM in this form: SVM, lasso, logistic regression, etc.
l  parallellize by duplicating z into w1, … wn

l  Exact Synchronization (bulk sync parallel) needed

min

z
g(z) +

nX

i=1

fi(Aiz � ci)

worker machine i server

min

w=[w1,...,wn],z
g(z) +

X

i

fi(Aiwi − c), s.t. z−wi = 0, 8i

IJCAI 15 © Eric Xing @ CMU, 2015 75

Column partition (model parallel)

l  in columns data , variables
l  Each function gj have its own variable wj

l  All variables wj coupled in f
l  parallelize by adding auxiliary variable

l  Exact Synchronization (bulk sync parallel) needed

worker machine j server

min

w
f
⇣ pX

j=1

Ajwj � c
⌘
+

pX

j=1

gj(wj)

w = [w1, . . . , wp]A = [A1, . . . , Ap]

z = [z1, . . . , zp]

min

w,z
f(
X

j
zj − c) +

X
j
gj(wj), s.t. Ajwj − zj = 0, 8j

IJCAI 15 © Eric Xing @ CMU, 2015 76

Asynchronous Parallel ADMM
[Zhang & Kwok, 2014]

l  Only simplified consensus problem being studied:

l  Can distribute the primal updates for each wi

l  But dual update can happen only after all
primal updates – barrier bottleneck

l  How to alleviate the barrier bottleneck?
l  Asynchronously execute dual update after seeing s out of n primal updates
l  Condition: no machine is too far behind

l  Can be achieved with bounded staleness [Ho et al., 2013]
l  Asynchronous convergence proved in [Zhang & Kwok, 2014]

min

w=[w1,...,wn],z

nX

i=1

fi(wi), s.t. wi − z = 0, 8i

(w1, . . . ,wn) argmin

w
Lµ(w, z;�)

� �+

P
i wi − z

© Eric Xing @ CMU, 2015 IJCAI 15 77

Outline:
Optimization & MCMC Algorithms

l  Optimization Algorithms
l  Stochastic gradient descent
l  Coordinate descent
l  Proximal gradient methods

l  ISTA, FASTA, Smoothing proximal gradient

l  ADMM

l  Markov Chain Monte Carlo Algorithms
l  Auxiliary Variable methods
l  Embarrassingly Parallel MCMC
l  Parallel Gibbs Sampling

l  Data parallel
l  Model parallel

IJCAI 15 © Eric Xing @ CMU, 2015 78

Example Probabilistic Program:
Topic Models

l  Generative model
l  Fit topics to each word xij in each doc i
l  Uses categorical distributions with parameters δ and B

l  Parameter priors
l  Induce sparsity in δ and B
l  Can also incorporate structure

l  E.g. asymmetric prior

IJCAI 15 © Eric Xing @ CMU, 2015

doc
(~ 1B)

topic

δi topic

word (~ 1M)

Bk

Generative
model of data

Priors on
parameters

79

Inference for Probabilistic
Programs: MCMC and SVI

δi	

zij	

	
 xij	
 	
 ΒΒ	

Ni	

N

	
 	
 K

Markov Chain Monte Carlo:
Randomly sample each variable in sequence

Next set of slides on this

Variational Inference:
Gradient ascent on variables

Can be treated as an optimization problem

δi	

zij	

xij	
 	
 ΒΒ	

Ni	

N

	
 	
 K

IJCAI 15 © Eric Xing @ CMU, 2015 80

Preliminaries:
Speeding up sequential MCMC

l  Technique 1: Alias tables
l  Sample from categorical distribution in amortized O(1)
l  “Throw darts at a dartboard”
l  Ex: probability distribution [0.5, 0.25, 0.25]

l  => alias table {1, 1, 2, 3} => draw from table uniformly at random

l  Technique 2: Cyclic Metropolis Hastings [Yuan et al., 2015]
l  Exploit Bayesian form P(z=k) = Pevidence(k) * Pprior(k)

l  Propose z1 from Pevidence(k)
l  Accept/Reject z1

l  Propose z2 from Pprior(k)
l  Accept/Reject z2 … repeat

l  Pprior(k), Pevi(k) cheap to compute with alias table

l  Other speedup techniques
l  Stochastic Gradient MCMC
l  Stochastic Variational Inference

IJCAI 15 © Eric Xing @ CMU, 2015 81

Pevidence(z = k) Pprior(z = k)

Parallel and Distributed MCMC:
Classic methods

l  Classic parallel MCMC solution 1
l  Take multiple chains in parallel, take average/consensus between chains.

l  But what if each chain is very slow to converge?
l  Need full dataset on each process – no data parallelism!

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged

IJCAI 15 © Eric Xing @ CMU, 2015 82

Parallel and Distributed MCMC:
Classic methods

l  Classic parallel MCMC solution 2
l  Sequential Importance Sampling
l  Rewrite distribution over n variables as telescoping product over proposals q():

l  SIS algorithm:
●  Parallel draw samples xi

n ~ qn(xn|xi
1:n-1)

●  Parallel compute unnorm. wgts.

●  Compute normalized weights wi

n by normalizing ri
n

l  Drawback: variance of SIS samples increases exponentially with n
l  Need resampling + take many chains to control variance

l  Let us look at newer solutions to parallel MCMC…

IJCAI 15 © Eric Xing @ CMU, 2015

where

83

Solution I: Induced Independence
via Auxiliary Variables [Dubey et al. 2013, 2014]

l  Auxiliary Variable Inference: reformulate model as P
independent models
l  Example below: Dirichlet Process for mixture models
l  Also applies to Hierarchical Dirichlet Process for topic models

l  AV model (left) equivalent to standard DP model (right)

IJCAI 15 © Eric Xing @ CMU, 2015 84

Solution I: Induced Independence
via Auxiliary Variables [Dubey et al., 2013, 2014]

●  Why does it work? A mixture over Dirichlet processes is
equivalent to a Dirichlet processes

DP on Processor 1

DP on Processor P

Dirichlet Mixture over
Processor DPs 1...P

IJCAI 15 © Eric Xing @ CMU, 2015 85

Solution I: Induced Independence
via Auxiliary Variables [Dubey et al., 2013, 2014]

l  Parallel inference algorithm:
l  Initialization: assign data randomly across P Dirichlet Processes; assign each

Dirichlet Process to one worker p=1..P
l  Repeat until convergence:

l  Each worker performs Gibbs sampling on local data within its DP
l  Each worker swaps its DP’s clusters with other workers, via Metropolis-Hastings:

§  For each cluster c, propose a new DP q=1..P
§  Compute proposal probability of c moving to p
§  Acceptance ratio depends on cluster size

l  Can be done asynchronously in parallel without affecting
performance

IJCAI 15 © Eric Xing @ CMU, 2015 86

Solution II: Embarrassingly Parallel
(but correct) MCMC [Neiswanger et al., 2014]

l  High-level idea:
l  Run MCMC in parallel on data subsets; no communication between machines.
l  Combine samples from machines to construct full posterior distribution samples.

l  Objective: recover full posterior distribution

l  Definitions:
l  Partition data into M subsets
l  Define m-th machine’s “subposterior” to be

l  Subposterior: “The posterior given a subset of the observations with an underweighted
prior”.

IJCAI 15 © Eric Xing @ CMU, 2015 87

Embarassingly Parallel MCMC
l  Algorithm

1.  For m=1…M independently in parallel, draw samples from each subposterior
2.  Estimate subposterior density product (and thus the full

posterior) by “combining subposterior samples”

l  “Combine subposterior samples” via nonparametric estimation
1.  Given T samples from each subposterior :

l  Construct Kernel Density Estimate (Gaussian kernel, bandwidth h):

2.  Combine subposterior KDEs:

l  where

IJCAI 15 © Eric Xing @ CMU, 2015 88

Embarassingly Parallel MCMC
l  Simulations:

l  More subposteriors = tighter estimates
l  EPMCMC recovers correct parameter
l  Naïve subposterior averaging does not!

IJCAI 15 © Eric Xing @ CMU, 2015 89

Solution III:
Parallel Gibbs Sampling

l  Many MCMC algorithms
l  Sequential Monte Carlo [Canini et al., 2009]
l  Hybrid VB-Gibbs [Mimno et al., 2012]
l  Langevin Monte Carlo [Patterson et al., 2013]
l  …

l  Common choice in tech/internet industry:
l  Collapsed Gibbs sampling [Griffiths and Steyvers, 2004]
l  e.g. topic model Collapsed Gibbs sampler:

IJCAI 15 © Eric Xing @ CMU, 2015 90

Properties of
Collapsed Gibbs Sampling (CGS)

l  Simple equation: easy for system engineers to scale up
l  Good theoretical properties

l  Rao-Blackwell theorem guarantees CGS sampler has lower variance (better
stability) than naïve Gibbs sampling

l  Empirically robust
l  Errors in δ, B do not affect final stationary distribution by much

l  Updates are sparse: fewer parameters to send over network
l  Model parameters δ, B are sparse: less memory used

l  If it were dense, even 1M word * 10K topic ≈ 40GB already!

IJCAI 15 © Eric Xing @ CMU, 2015 91

CGS Example:
Topic Model sampler

topic

doc
(~ 1B)

topic word (~ 1M)

topic

IJCAI 15 © Eric Xing @ CMU, 2015 92

Data Parallelization for
CGS Topic Model Sampler

doc
partition

topic word (~ 1M)

doc
partition

doc
partition

model
replica

model
replica

model
replica

IJCAI 15 © Eric Xing @ CMU, 2015 93

Data-Parallel Strategy 1:
Approx. Distributed LDA
[Newman et al., 2009]

l  Step 1: broadcast central model

IJCAI 15 © Eric Xing @ CMU, 2015 94

Data-Parallel Strategy 1:
Approx. Distributed LDA
[Newman et al., 2009]

l  Step 1: broadcast central model

IJCAI 15 © Eric Xing @ CMU, 2015 95

Data-Parallel Strategy 1:
Approx. Distributed LDA
[Newman et al., 2009]

l  Step 2: Perform Gibbs sampling in parallel

IJCAI 15 © Eric Xing @ CMU, 2015 96

Data-Parallel Strategy 1:
Approx. Distributed LDA
[Newman et al., 2009]

l  Step 3: commit changes back to the central model

IJCAI 15 © Eric Xing @ CMU, 2015 97

Data-Parallel Strategy 1:
Approx. Distributed LDA
[Newman et al., 2009]

l  Approximate
l  Convergence not guaranteed – Markov Chain ergodicity broken
l  Results generally “good enough” for industrial use

l  Bulk synchronous parallel
l  CPU cycles are wasted while synchronizing the model

l  How to overlap communication and computation for better
efficiency?

IJCAI 15 © Eric Xing @ CMU, 2015 98

Data-Parallel Strategy 2:
Asynchronous LDA
[Smola et al., 2010; Ahmed et al., 2012]

l  Also known as YahooLDA!
l  Synchronize even while sampling is going on

IJCAI 15 © Eric Xing @ CMU, 2015 99

Data-Parallel Strategy 2:
Asynchronous LDA
[Smola et al., 2010; Ahmed et al., 2012]

l  Multiple servers to share load

IJCAI 15 © Eric Xing @ CMU, 2015 100

Data-Parallel Strategy 2:
Asynchronous LDA
[Smola et al., 2010; Ahmed et al., 2012]

l  Every machine keeps a local copy, updated asynchronously

Model replica for
sync

Model replica for sampling

Key-Value store

IJCAI 15 © Eric Xing @ CMU, 2015 101

Data-Parallel Strategy 2:
Asynchronous LDA
[Smola et al., 2010; Ahmed et al., 2012]

l  Asynchronous communication
l  Overlaps computation and communication – iterations are faster
l  But still approximate

l  Also need to keep local copy of model
l  What if larger than machine capacity?

IJCAI 15 © Eric Xing @ CMU, 2015 102

Data-Parallel Strategy 3:
Petuum LDA v1 [Dai et al., 2015]

●  Bounded-async protocol (SSP) + Least Recently Used
Cache

LRU cache of the model

Key-Value store

SSP protocol

IJCAI 15 © Eric Xing @ CMU, 2015 103

Data-Parallel Strategy 3:
Petuum LDA v1 [Dai et al., 2015]

●  Use of LRU and SSP protocol saves memory while
retaining consistency

●  But can we do better? Is the access pattern
predictable?

●  Recall the sampling equation

●  Not all of them need to be in memory throughout
l  Can we schedule the sampling order?

IJCAI 15 © Eric Xing @ CMU, 2015 104

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l  Think graphically: token = edge

doc word

IJCAI 15 © Eric Xing @ CMU, 2015 105

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l  Model-parallel via graph structure

doc word

IJCAI 15 © Eric Xing @ CMU, 2015 106

Model-Parallel Strategy 1:
GraphLab LDA [Low et al., 2010; Gonzalez et al., 2012]

l  Asynchronous communication
l  Overlaps computation and communication – iterations are faster

l  Model-parallelism reduces error compared to data-parallelism
l  Disjoint words and docs on each machine => nearly-independent sampling
l  Exception: summary term is inexact

l  Model-parallelism means each machine only stores a subset
of statistics

l  Drawback: need to convert problem into a graph
l  Vertex-cut duplicates lots of vertices, canceling out savings

l  Are there other ways to partition the problem?

IJCAI 15 © Eric Xing @ CMU, 2015 107

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Topic model matrix structure:

l  Idea: non-overlapping matrix partition:

Source: [Gemulla et al., 2011]

topic

doc
(~ 1B)

topic word (~ 1M)

topic

IJCAI 15 © Eric Xing @ CMU, 2015 108

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Non-overlapping partition of the word count matrix
l  Fix data at machines, send model to machines as needed

IJCAI 15 © Eric Xing @ CMU, 2015 109

Source: [Gemulla et al., 2011]

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  During preprocessing: determine set of words used in each
data block

l  Begin training: load each data block from disk

IJCAI 15 © Eric Xing @ CMU, 2015

disk

sequential
read

110

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Pull the set of words from Key-Value store

IJCAI 15 © Eric Xing @ CMU, 2015

disk

=

sequential
read

111

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Sample and write the result to disk

IJCAI 15 © Eric Xing @ CMU, 2015

disk

sequential
read

sequential write

=

112

Model-Parallel Strategy 2:
LightLDA (Petuum LDA v2)
[Yuan et al., 2015]

l  Disjoint words and docs on each machine
l  Gibbs sampling almost equivalent to sequential case
l  More accurate than data-parallel LDA
l  Fast, asynchronous execution possible

l  Gibbs probability distributions very close to sequential case
l  Exception: summary term is slightly different on each machine
l  Mitigating factor: summary term very large for Big Data (typical size is >billions)

l  Differences in summary terms have small impact on Gibbs probability distributions

IJCAI 15 © Eric Xing @ CMU, 2015 113

Model-Parallel Strategy 3:
STRADS LDA (Petuum LDA v3)
[Lee et al., 2014]

l  General-purpose system for “sending model to data” –
scheduled model-parallelism

l  Programmer writes code for data input, computation, and
model output

l  Communication and scheduling handled by the system

IJCAI 15 © Eric Xing @ CMU, 2015

func	
 (input)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 /*	
 compute	
 */	

	
 	
 	
 	
 	
 	
 	
 	
 ……	

	
 	
 	
 	
 	
 	
 	
 	
 return	

output;	

}	

114

Distributed ML Algorithms
Summary

l  Many parallel algorithms for both Optimization and MCMC
l  They share common parallelization themes

l  Embarrassingly parallel: combine results from multiple independent problems,
e.g. PSGD, EP-MCMC

l  Stochastic over data: approximate functions/ gradients with expectation over
subset of data, then parallelize over data subsets, e.g. SGD

l  Model-parallel: parallelize over model variables, e.g. Coordinate Descent
l  Auxiliary variables: decompose problem by decoupling dependent variables,

e.g. ADMM, Auxiliary Variable MCMC

l  Considerations
l  Regularizers, model structure: may need sequential proximal or projection

step, e.g. Stochastic Proximal Gradient
l  Data partitioning: for data-parallel, how to split data over machines?
l  Model partitioning: for model-parallel, how to split model over machines? Need

to be careful as model variables are not necessarily independent of each other.

IJCAI 15 © Eric Xing @ CMU, 2015 115

Implementing
Distributed ML Algorithms

l  Implementing high-performance distributed ML is not easy
l  If not careful, can end up slower than single machine!

l  System bottlenecks (load imbalance, network bandwidth & latency) are not trivial
to engineer around

l  Even if algorithm is theoretically sound and has attractive
properties, still need to pay attention to system aspects
l  Bandwidth (communication volume limits)
l  Latency (communication timing limits)
l  Data and Model partitioning (machine memory limitation, also affects comms

volume)
l  Data and Model scheduling (affects convergence rate, comms volume & timing)
l  Non-ideal systems behavior: uneven machine performance, other cluster users

IJCAI 15 © Eric Xing @ CMU, 2015 116

Implementing
Distributed ML Algorithms

l  A number of ad-hoc or partial solutions, but sometimes
lacking theoretical analysis
l  Major barrier: hard to analyze solutions because algorithm/systems sometimes

not fully/transparently described in papers
l  Possible solution: a universal language and principles for design could facilitate

theoretical analysis of existing and new solutions

l  Let us look at some open-source platforms, which distributed
ML algorithms can be implemented upon

IJCAI 15 © Eric Xing @ CMU, 2015 117

SScchhooooll ooff CCoommppuutteerr SScciieennccee

Open-Source Platforms
for Distributed ML

IJCAI 15 © Eric Xing @ CMU, 2015 118

Modern Systems for Big ML
●  Just now: data-, model-parallel ML algorithms for optimization,

MCMC

●  One could write distributed implementations from scratch

●  Perhaps better to use an existing open source platform?

IJCAI 15 © Eric Xing @ CMU, 2015 119

Spark Overview [Zaharia et al., 2010]
●  General-purpose system for Big Data processing

o  Shell/interpreter for Matlab/R-like analytics

●  MLlib = Spark’s ready-to-run ML library

o  Implemented on Spark’s API

IJCAI 15 © Eric Xing @ CMU, 2015 120

Spark Overview [Zaharia et al., 2010]
l  MLlib algorithms (v1.4)

l  Classification and regression
l  linear models (SVMs, logistic regression, linear regression)
l  naive Bayes
l  decision trees
l  ensembles of trees (Random Forests and Gradient-Boosted Trees)
l  isotonic regression

l  Collaborative filtering
l  alternating least squares (ALS)

l  Clustering
l  k-means
l  Gaussian mixture
l  power iteration clustering (PIC)
l  latent Dirichlet allocation (LDA)
l  streaming k-means

l  Dimensionality reduction
l  singular value decomposition (SVD)
l  principal component analysis (PCA)

IJCAI 15 © Eric Xing @ CMU, 2015 121

Spark Overview [Zaharia et al., 2010]

●  Key feature: Resilient Distributed Datasets (RDDs)
●  Data processing = lineage graph of transforms
●  RDDs = nodes
●  Transforms = edges

IJCAI 15 © Eric Xing @ CMU, 2015 122

Source: Zaharia et al. (2012)

Spark Overview [Zaharia et al., 2010]
l  RDD-based programming model

l  Similar in spirit to Hadoop Mapreduce
l  Functional style: manipulate RDDs via “transformations”, “actions”

l  E.g. map is a transformation, reduce is an action

l  Example: load file, count total number of characters

l  Other transformations and actions:
l  union(), intersection(), distinct()
l  count(), first(), take(), foreach()
l  …

l  Can specify if an RDD should be “persisted” to disk
l  Allows for faster recovery during cluster faults

IJCAI 15 © Eric Xing @ CMU, 2015 123

val	
 lines	
 =	
 sc.textFile("data.txt")	

val	
 lineLengths	
 =	
 lines.map(s	
 =>	
 s.length)	

val	
 totalLength	
 =	
 lineLengths.reduce((a,	
 b)	
 =>	
 a	
 +	
 b)	

Spark Overview [Zaharia et al., 2010]

●  Benefits of Spark:
●  Fault tolerant - RDDs immutable, just re-compute from lineage
●  Cacheable - keep some RDDs in RAM

o  Faster than Hadoop MR at iterative algorithms
●  Supports MapReduce as special case

IJCAI 15 © Eric Xing @ CMU, 2015 124

Source: Zaharia et al. (2012)

Spark:
Faster MapR on Data-Parallel
●  Spark’s solution: Resilient Distributed Datasets (RDDs)

o  Input data → load as RDD → apply transforms → output result
o  RDD transforms strict superset of MapR
o  RDDs cached in memory, avoid disk I/O

●  Spark ML library supports data-parallel ML algos, like Hadoop
o  Spark and Hadoop: comparable first iter timings…
o  But Spark’s later iters are much faster

IJCAI 15 © Eric Xing @ CMU, 2015 125
Source: ebaytechblog.com

Spark:
Theoretical Considerations

l  RDDs can be used to implement Bulk Synchronous programs
l  e.g. Map-Reduce programs

l  No specific theory required
l  If a parallel algorithm is proven correct under synchronous execution, it will also

be correct under Spark execution

IJCAI 15 © Eric Xing @ CMU, 2015 126
Source: ebaytechblog.com

GraphLab Overview [Low et al., 2012]
l  Known as “GraphLab PowerGraph v2.2”

l  Different from commercial software “GraphLab Create” by Dato.com, who
formerly developed PowerGraph v2.2

l  System for Graph Programming
l  Think of ML algos as graph algos

l  Comes with ready-to-run “toolkits”
l  ML-centric toolkits: clustering, collaborative filtering, topic modeling, graphical

models

IJCAI 15 © Eric Xing @ CMU, 2015 127

GraphLab Overview [Low et al., 2012]
l  ML-related toolkits

l  Clustering
l  K-means
l  Spectral

l  Collaborative Filtering
l  Matrix Factorization (including Non-negative, L1/L2-regularized)

l  Graphical Models
l  Factor graphs
l  Belief propagation algorithm

l  Topic Modeling
l  LDA

l  Other toolkits available for computer vision, graph analytics,
linear systems

IJCAI 15 © Eric Xing @ CMU, 2015 128

●  Key feature: Gather-Apply-Scatter Programming Model
o  Write ML algos as vertex programs
o  Run vertex programs in parallel on each graph node
o  Graph nodes, edges can have data, parameters

IJCAI 15 © Eric Xing @ CMU, 2015 129

Source: Gonzalez (2012)

GraphLab Overview [Low et al., 2012]

●  Programming Model: GAS Vertex Programs
o  1) Gather(): Accumulate data, params from my neighbors + edges
o  2) Apply(): Transform output of Gather(), write to myself
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

IJCAI 15 © Eric Xing @ CMU, 2015 130

GraphLab Overview [Low et al., 2012]

●  Programming Model: GAS Vertex Programs
o  1) Gather(): Accumulate data, params from my neighbors + edges
o  2) Apply(): Transform output of Gather(), write to myself
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

IJCAI 15 © Eric Xing @ CMU, 2015 131

GraphLab Overview [Low et al., 2012]

●  Programming Model: GAS Vertex Programs
o  1) Gather(): Accumulate data, params from my neighbors + edges
o  2) Apply(): Transform output of Gather(), write to myself
o  3) Scatter(): Transform output of Gather(), Apply(), write to my edges

Source: Gonzalez (2012)

IJCAI 15 © Eric Xing @ CMU, 2015 132

GraphLab Overview [Low et al., 2012]

GraphLab Overview [Low et al., 2012]
l  Example GAS program: Pagerank

l  Programmer implements gather(), apply(), scatter() functions

IJCAI 15 © Eric Xing @ CMU, 2015

Source: Gonzalez et al. (OSDI 2012)

133

●  Benefits of Graphlab
o  Supports asynchronous execution - fast, avoids straggler problems
o  Edge-cut partitioning - scales to large, power-law graphs
o  Graph-correctness - for ML, more fine-grained than MapR-correctness

Source: Gonzalez (2012)

IJCAI 15 © Eric Xing @ CMU, 2015 134

GraphLab Overview [Low et al., 2012]

●  GraphLab Graph consistency models
o  Guide search for “ideal” model-parallel execution order
o  ML algo correct if input graph has all dependencies

●  GraphLab supports asynchronous (no-waiting) execution
o  Correctness enforced by graph consistency model
o  Result: GraphLab graph-parallel ML much faster than Hadoop

Source: Low et al. (2010)
IJCAI 15 © Eric Xing @ CMU, 2015 135

GraphLab:
Model-Parallel via Graphs

GraphLab:
Theoretical Considerations

l  GraphLab is an asynchronous system
l  Graph-consistency models used to enforce desirable graph-theoretic properties

l  Using “Full Consistency”, Gibbs sampling is provably correct
[Gonzalez et al., 2011]

l  No known results for Edge/Vertex Consistency

IJCAI 15 © Eric Xing @ CMU, 2015 136

A	
 New	
 Framework	
 for	
 Large	
 Scale	
 Parallel	

Machine	
 Learning	

(Petuum.org)	

IJCAI 15 © Eric Xing @ CMU, 2015 137

Petuum Overview [Xing et al., 2015]
l  Key modules

l  Key-value store (Parameter Server) for data-parallel ML algos
l  Scheduler for model-parallel ML algos

l  Program ML algos in iterative-convergent style
l  ML algo = (1) write update equations + (2) iterate eqns via schedule

IJCAI 15 © Eric Xing @ CMU, 2015 138

Petuum Overview [Xing et al., 2015]
l  ML Library (Petuum v1.1):

l  Topic Modeling
l  LDA
l  MedLDA (Maximum Entropy Discrimination)

l  Deep Learning
l  Fully-connected DNN
l  Convolutional Neural Network

l  Matrix Factorization
l  Least-squares Collaborative Filtering (with regularization)
l  Non-negative Matrix Factorization
l  Sparse Coding

l  Regression
l  Lasso Regression

l  Metric Learning
l  Distance Metric Learning

l  Clustering
l  K-means

l  Classification
l  Random Forest
l  Logistic Regression and SVM
l  Multi-class Logistic Regression

IJCAI 15 © Eric Xing @ CMU, 2015 139

Petuum Overview [Xing et al., 2015]
l  Key-Value store (Parameter Server)

l  Enables data-parallelism
l  A type of Distributed Shared Memory (DSM)

l  Model parameters globally shared across workers

l  Programming: replace local variables with PS calls

IJCAI 15 © Eric Xing @ CMU, 2015 140

KV-
store

(one or more
machines)

Worker 1 Worker 2

Worker 3 Worker 4

ProcessDataPoint(i)	
 {	

	
 	
 for	
 j	
 =	
 1	
 to	
 M	
 {	

	
 	
 	
 	
 old	
 =	
 model[j]	

	
 	
 	
 	
 delta	
 =	
 f(model,data(i))	

	
 	
 	
 	
 model[j]	
 +=	
 delta	

	
 	
 }	

}	

Single
Machine

ProcessDataPoint(i)	
 {	

	
 	
 for	
 j	
 =	
 1	
 to	
 M	
 {	

	
 	
 	
 	
 old	
 =	
 PS.read(model,j)	

	
 	
 	
 	
 delta	
 =	
 f(model,data(i))	

	
 	
 	
 	
 PS.inc(model,j,delta)	

	
 	
 }	

}	

Distributed
with PS

Petuum Overview [Xing et al., 2015]
l  Key-Value store features:

l  ML-tailored consistency model: Stale Synchronous Parallel (SSP)
l  Asynchronous-like speed
l  Bulk Synchronous Parallel-like correctness guarantees for ML

IJCAI 15 © Eric Xing @ CMU, 2015 141

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 1 may not see
these updates (limited error)

Petuum Overview [Xing et al., 2015]
l  Scheduler

l  Enables correct model-parallelism
l  Can analyze ML model structure for best execution order
l  Programming: schedule(), push(), pull() abstraction

IJCAI 15 © Eric Xing @ CMU, 2015 142

Petuum Overview [Xing et al., 2015]
l  Scheduler benefits:

l  ML scheduling engine: Structure-Aware Parallelization (SAP)
l  Scheduled ML algos require less computation to finish

IJCAI 15 © Eric Xing @ CMU, 2015 143

Sharp drop
due to SAP

Petuum:
ML props = 1st-class citizen

l  Error tolerance via Stale Sync Parallel KV-store
l  System Insight 1: ML algos bottleneck on network comms
l  System Insight 2: More caching => less comms => faster execution

IJCAI 15 © Eric Xing @ CMU, 2015 144

More caching (more staleness)

Petuum:
ML props = 1st-class citizen

l  Harness Block dependency structure via Scheduler
l  System Insight 1: Pipeline scheduler to hide latency
l  System Insight 2: Load-balance blocks to prevent stragglers

IJCAI 15 © Eric Xing @ CMU, 2015 145

Blocks in Lasso
Regression problem

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars
for update

All Parameters and
Variables

Generate Blocks

Blocks of
variables

Check Variable
Dependencies

Petuum:
ML props = 1st-class citizen

l  Exploit Uneven Convergence via Prioritizer
l  System Insight 1: Prioritize small # of vars => fewer deps to check
l  System Insight 2: Lowers computational cost of Scheduling

IJCAI 15 © Eric Xing @ CMU, 2015 146

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Prioritize Params/Vars
for update

All Parameters and
Variables

Generate Blocks

Blocks of
variables

Check Variable
Dependencies

Petuum Architecture and
Hadoop Ecosystem Integration

IJCAI 15 © Eric Xing @ CMU, 2015

HDFS (distributed storage)

YARN (resource manager, fault tolerance)

Bounded-Async
KV-store (Bösen)

Dynamic Scheduler
(Strads)

Data-Parallel API Model-Parallel API

ML application library

Hadoop Ecosystem

and others …

147

ML Programming Interface:
Needs and Considerations

l  An ideal ML programming interface should make it easy to
write correct data-parallel, model-parallel ML programs

l  ML programs are “stateful”
l  Model state θ updated every iteration; auxiliary local variables (e.g. summary

statistics) often needed at each parallel worker
l  Natural fit for imperative programming style, coupled with distributed shared

memory that automatically synchronizes model state via a consistency model
l  Map-Reduce: communicating model state through Map-reduce API can be

expensive for Big Models; may require external distributed shared memory
support (e.g. Cassandra, Memcached)

l  Message-passing (e.g. MPI): efficient, but requires user to explicitly decide
when to communicate updates

IJCAI 15 © Eric Xing @ CMU, 2015 148

ML Programming Interface:
Needs and Considerations

l  An ideal ML programming interface should make it easy to
write correct data-parallel, model-parallel ML programs

l  ML programs can require explicit scheduling, e.g. model-
parallel
l  Programming interface should separate update functions from schedule

functions
l  GraphLab, Spark, Hadoop perform scheduling according to their own criteria;

user-defined scheduling not currently available but could be implemented

IJCAI 15 © Eric Xing @ CMU, 2015 149

ML Programming Interface:
Needs and Considerations

l  An ideal ML programming interface should make it easy to
write correct data-parallel, model-parallel ML programs

l  ML shown to be efficient under non-blocking, bounded-
asynchronous communication
l  Distributed shared memory system (e.g. KV-store, parameter server) handles all

communication
l  Ideal: read/write model θ without worrying about communication; program

correctness assured by bounded-async theoretical guarantees
l  Open question: possible to adapt GraphLab (graph-async) and Hadoop/Spark

(bulk synchronous) to bounded-async execution?

IJCAI 15 © Eric Xing @ CMU, 2015 150

ML Programming Interface:
Needs and Considerations

l  An ideal ML programming interface should make it easy to
write correct data-parallel, model-parallel ML programs

l  What can be abstracted away?
l  Abstract away inter-worker communication/synchronization:

l  Automatic consistency models; bandwidth management through distributed shared
memory

l  Abstract scheduling away from update equations:
l  Easy to change scheduling strategy, or use dynamic schedules

l  Abstract away worker management:
l  Let ML system decide optimal number and configuration of workers

l  Ideally, reduce programmer burden to just 3 things:
l  Declare model, write updates, write schedule

IJCAI 15 © Eric Xing @ CMU, 2015 151

SScchhooooll ooff CCoommppuutteerr SScciieennccee

Systems, Architectures
for Distributed ML

IJCAI 15 © Eric Xing @ CMU, 2015 152

There Is No Ideal Distributed System!

l  Not quite that easy…
l  Two distributed challenges:

l  Networks are slow
l  “Identical” machines rarely perform equally

Low bandwidth,
High delay

Unequal
performance

0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32
Se

co
n

d
s

Network waiting time

Compute time

IJCAI 15 © Eric Xing @ CMU, 2015

BSP execution:
Long sync time

Async execution:
May diverge

153

Issue: How to approach
distributed systems?

l  Idealist view
l  Start with simplified view of distributed

systems; develop elaborate theory

l  Issues being explored:
l  Information theoretic lower bounds for

communication [Zhang et al. 2013]
l  Provably correct distributed

architectures, with mild assumptions
[Langford et al. 2009, Duchi and
Agarwal 2011]

l  How can we build practical solutions
using these ideas?

l  Pragmatist view
l  Start with real-world, complex

distributed systems, and develop a
combination of theoretical guarantees
and empirical evidence

l  Issues being explored:
l  Fault tolerance and recovery [Zaharia

et al. 2012, Spark, Li et al. 2014]
l  Impact of stragglers and delays on

inference, and robust solutions [Ho et
al. 2013, Dai et al. 2015, Petuum, Li et
al. 2014]

l  Scheduling of inference computations
for massive speedups [Low et al. 2012,
GraphLab, Kim et al. 2014, Petuum]

l  How can we connect these
phenomena to theoretical inference
correctness and speed?

IJCAI 15 © Eric Xing @ CMU, 2015 154

The systems interface of Big
Learning

l  Parallel Optimization and MCMC algorithms = “algorithmic
interface” to Big Learning
l  Reusable building blocks to solve large-scale inferential challenges in Big Data

and Big Models

l  What about the systems (hardware, software platforms) to
execute the algorithmic interface?
l  Hardware: CPU clusters, GPUs, Gigabit ethernet, Infiniband

l  Behavior nothing like single machine – what are the challenges?

l  Software platforms: Hadoop, Spark, GraphLab, Petuum
l  Each with their own “execution engine” and unique features
l  Different pros and cons for different data-, model-parallel styles of algorithms

IJCAI 15 © Eric Xing @ CMU, 2015 155

Why need new Big ML systems?
MLer’s view

�  Focus on
�  Correctness
�  fewer iteration to converge,

�  but assuming an ideal system, e.g.,
�  zero-cost sync,
�  uniform local progress

 for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 parallelUpdate(x,θ)	

	
 	
 doOtherThings()	

}	

Parallelize over
worker threads

Share global model
parameters via RAM

0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32

Se
co

nd
s

Compute vs Network
LDA 32 machines (256 cores)

Network waiting time

Compute time

IJCAI 15 © Eric Xing @ CMU, 2015 156

Why need new Big ML systems?
SSyysstteemmss VViieeww::

�  Focus on
�  high iteration throughput (more iter per sec)
�  strong fault-tolerant atomic operations,

�  but assume ML algo is a black box
�  ML algos “still work” under different execution

models
�  “easy to rewrite” in chosen abstraction

Non-uniform
convergence

Dynamic
structures

Error
tolerance

Agonistic of ML properties and objectives in system
design

1

2

3

3

1

3

5

6or

Synchronization model

Programming model

Shotgun with 2 machines
Single machine (shooting algorithm)

Shotgun with 4 machines flies away!

IJCAI 15 © Eric Xing @ CMU, 2015 157

Why need new Big ML systems?
MLer’s view

�  Focus on
�  Correctness
�  fewer iteration to converge,

�  but assuming an ideal system, e.g.,
�  zero-cost sync,
�  uniform local progress

 Oversimplify systems issues
�  need machines to perform

consistently
�  need lots of synchronization
�  or even try not to communicate at all

SSyysstteemmss VViieeww::
�  Focus on

�  high iteration throughput (more iter per sec)
�  strong fault-tolerant atomic operations,

�  but assume ML algo is a black box
�  ML algos “still work” under different execution

models
�  “easy to rewrite” in chosen abstraction

 Oversimplify ML issues and/or
ignore ML opportunities
�  ML algos “just work” without proof
�  Conversion of ML algos across

different program models (graph
programs, RDD) is easy

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 parallelUpdate(x,θ)	

	
 	
 doOtherThings()	

}	

1

2

3

3

1

3

5

6or

IJCAI 15 © Eric Xing @ CMU, 2015 158

  Nonparametric
Bayesian Models

  Graphical
Models

  Sparse Structured
I/O Regression   Sparse Coding

  Spectral/Matrix
Methods

  Regularized
Bayesian Methods   Deep Learning   Large-Margin

Machine Learning Models/Algorithms

  Network switches
  Infiniband

  Network attached storage
  Flash storage

  Server machines
  Desktops/Laptops
  NUMA machines

  GPUs   Cloud compute
(e.g. Amazon EC2)

  Virtual Machines

Hardware and infrastructure

Solution:

IJCAI 15 © Eric Xing @ CMU, 2015 159

  Nonparametric
Bayesian Models

  Graphical
Models

  Sparse Structured
I/O Regression   Sparse Coding

  Spectral/Matrix
Methods

  Regularized
Bayesian Methods   Deep Learning   Large-Margin

Machine Learning Models/Algorithms

  Network switches
  Infiniband

  Network attached storage
  Flash storage

  Server machines
  Desktops/Laptops
  NUMA machines

  GPUs   Cloud compute
(e.g. Amazon EC2)

  Virtual Machines

Hardware and infrastructure

Solution:
An Alg/Sys INTERFACE for Big ML

IJCAI 15 © Eric Xing @ CMU, 2015 160

The Big-ML “Stack” - More than
just software

Theory: Degree of parallelism, convergence analysis, sub-sample complexity
…

System: Distributed architecture: DFS, KV-store, task scheduler…

Model: Generic building blocks: loss functions, structures, constraints,
priors …

Algorithm: Parallelizable and stochastic MCMC, VI, Opt, Spectrum …

Representation: Compact and informative features

Programming model & Interface:
High: Matlab/R
Medium: C/JAVA
Low: MPI

Hardware: GPU, flash storage, cloud …

IJCAI 15 © Eric Xing @ CMU, 2015 161

Markov Chain Monte Carlo Optimization

ML algorithms are
Iterative-Convergent

© Eric Xing @ CMU, 2015 IJCAI 15 162

δi	

zij	

	
 xij	
 	
 ΒΒ	

Ni	

N

	
 	
 K

δi	

zij	

xij	
 	
 ΒΒ	

Ni	

N

	
 	
 K

Read
Read +
Write

Data

Model Parameters
at iteration (t-1)

Iterative Algorithm

Intermediate Updates

Aggregate +
Transform

Updates

A General Picture of ML
Iterative-Convergent Algorithms

© Eric Xing @ CMU, 2015 IJCAI 15 163

Issues with Hadoop and
I-C ML Algorithms?

Naïve MapReduce not best for ML

●  Hadoop can execute iterative-convergent, data-parallel ML...

o  map() to distribute data samples i, compute update Δ(Di)
o  reduce() to combine updates Δ(Di)
o  Iterative ML algo = repeat map()+reduce() again and again

●  But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

HDFS Bottleneck
Image source: dzone.com

Iteration 1 Iteration 2

IJCAI 15 © Eric Xing @ CMU, 2015 164

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 parallelUpdate(x,θ)	

	
 	
 doOtherThings()	

}	

Good Parallelization Strategy
is important

ML on
epoch 1

ML on
epoch 2

ML on
epoch 3

ML on
epoch m

Barrier ?

Write
outcome to

KV store

Write
outcome to
KV store

Write
outcome to
KV store

Write
outcome to
KV store

Collect
outcomes and
aggregate

Do nothing Do nothing Do nothing 0
1000
2000
3000
4000
5000
6000
7000
8000

0 8 16 24 32

Se
co

n
d

s

Network waiting time

Compute time

IJCAI 15 © Eric Xing @ CMU, 2015 165

Data Parallelism

Additive Updates

IJCAI 15 © Eric Xing @ CMU, 2015 166

Model
(Topics)

Data (Docs) Update (MCMC
algo)

BIG DATA (billions of docs)

Example Data Parallel:
Topic Models

© Eric Xing @ CMU, 2015 IJCAI 15 167

Example Data Parallel:
Topic Models

IJCAI 15 © Eric Xing @ CMU, 2015

MCMC algo MCMC algo MCMC algo MCMC algo MCMC algo

Global shared model

168

Concatenating updates

Model Parallelism
Scheduling
Function

Read +
Write

model parameters not
updated in this
iteration IJCAI 15 © Eric Xing @ CMU, 2015 169

Model (Parameter
Vector)

Data (Feature + Response
Matrices)

Update (CD algo)

BIG MODEL (100 billions of params)

Example Model Parallel:
Lasso Regression

© Eric Xing @ CMU, 2015 IJCAI 15 170

Example Model Parallel:
Lasso Regression

IJCAI 15 © Eric Xing @ CMU, 2015
171

171

A Dichotomy of Data and Model
in ML Programs

Di?Dj | ✓, 8i 6= j ~✓i 6? ~✓j | D, 9(i, j)

Data Parallelism Model Parallelism

IJCAI 15 © Eric Xing @ CMU, 2015 172

Data+Model Parallel:
Solving Big Data+Model

Model (edge weights)
Data (images)

Update
(backpropagation)

Data & Model both big!
Millions of images,
Billions of weights

What to do?

© Eric Xing @ CMU, 2015 IJCAI 15 173

Data+Model Parallel:
Solving Big Data+Model

IJCAI 15 © Eric Xing @ CMU, 2015

BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo BackP algo

Parameter Synchronization Channel

Tackle Deep Learning scalability
challenges by combining data

+model parallelism

174

How difficult is
data/model-parallelism?

l  Certain mathematical conditions must be met

l  Data-parallelism generally OK when data IID (independent,
identically distributed)
l  Very close to serial execution, in most cases

l  Naive Model-parallelism doesn’t work
l  NOT equivalent to serial execution of ML algo
l  Need carefully designed schedule

© Eric Xing @ CMU, 2015 IJCAI 15 175

Intrinsic Properties of ML Programs

l  ML is optimization-centric, and admits an iterative convergent
algorithmic solution rather than a one-step closed form solution
l  Error tolerance: often robust against limited

 errors in intermediate calculations

l  Dynamic structural dependency: changing correlations
 between model parameters critical to efficient parallelization

l  Non-uniform convergence: parameters
 can converge in very different number of steps

l  Whereas traditional programs are transaction-centric, thus only

guaranteed by atomic correctness at every step

l  How do existing platforms (e.g., Spark, GraphLab) fit the above?

IJCAI 15 © Eric Xing @ CMU, 2015 176

Challenges in Data Parallelism
l  Existing ways are either safe/slow (BSP), or fast/risky (Async)

l  Challenge 1: Need “Partial” synchronicity
l  Spread network comms evenly (don’t sync unless needed)
l  Threads usually shouldn’t wait – but mustn’t drift too far apart!

l  Challenge 2: Need straggler tolerance
l  Slow threads must somehow catch up

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

3

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

???

BSP Async

Is persistent memory really necessary for ML?
IJCAI 15 © Eric Xing @ CMU, 2015 177

Is there a middle ground for data-
parallel consistency?

l  Challenge 1: “Partial” synchronicity
l  Spread network comms evenly (don’t sync unless needed)
l  Threads usually shouldn’t wait – but mustn’t drift too far apart!

l  Challenge 2: Straggler tolerance
l  Slow threads must somehow catch up

IJCAI 15 © Eric Xing @ CMU, 2015

1	

1	

1	

1

Thread	
 1	

Thread	
 2	

Thread	
 3	

Thread	
 4	

2	

2	

2	

3	

3	

3	

4	

4	

4	

5	

5	

5	
 6	

6	

6	

Force	
 threads	
 to	
 sync	

up	

2	
 3	
 4	
 5	
 6	

Thread	
 1	
 catches	
 up	
 by	

reducing	
 network	
 comms	

Time	

178

High-Performance Consistency Models
for Fast Data-Parallelism [Ho et al., 2013]

Stale Synchronous Parallel (SSP), a “bounded-asycnhronous” model

  Allow threads to run at their own pace, without synchronization
  Fastest/slowest threads not allowed to drift >S iterations apart
  Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 1 may not see
these updates (possible error)

Consequence:

  Asynchronous-like speed, BSP-like ML correctness guarantees
  Guaranteed age bound (staleness) on reads
  Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

3

3

3

3

1

Thread 1

Thread 2

Thread 3

Thread 4

3

5

6

IJCAI 15 © Eric Xing @ CMU, 2015 179

Improving Bounded-Async via
Eager Updates [Dai et al., 2015]

l  Eager SSP (ESSP) protocol
l  Use spare bandwidth to push

fresh parameters sooner

l  Figure: difference in stale
reads between SSP and ESSP
l  ESSP has fewer stale reads;

lower staleness variance
l  Faster, more stable

convergence (theorems later)

IJCAI 15 © Eric Xing @ CMU, 2015 180

Enjoys Async Speed, yet BSP
Guarantee, across algorithms

l  Scale up Data Parallelism without being limited by long BSP
synchronization time

l  Effective across different algorithms, e.g. LDA, Lasso, Matrix
Factorization:

IJCAI 15 © Eric Xing @ CMU, 2015

LASSO Matrix Fact. LDA

181

Example Petuum-PS Program:
Tree-Structured Dirichlet Process

l  Application: hierarchically-structured topic model

IJCAI 15 © Eric Xing @ CMU, 2015 182

Example Petuum-PS Program:
Tree-Structured Dirichlet Process

l  Inference algorithm alternates
between 2 phases

l  Phase 1: Data-parallel
parameter estimation
l  Fix tree structure; learn node

parameters
l  Petuum-PS stores data-related

sufficient statistics
l  Aggregate updates from different

workers’ data samples

l  Phase 2: Tree evolution
l  Create or merge tree nodes
l  Petuum-PS stores “operation

records” that track tree changes

IJCAI 15 © Eric Xing @ CMU, 2015 183

Example Petuum-PS Program:
Tree-Structured Dirichlet Process

IJCAI 15 © Eric Xing @ CMU, 2015

Phase 1 data-parallel
param estimation

Phase 2 merge moves

Phase 2 birth moves

Phase 1 data-parallel
param estimation

184

Example Petuum-PS Program:
Tree-Structured Dirichlet Process

l  Linear speedup on Petuum-PS
l  From 1 to 4 machines

l  Converged tree has 10k nodes (topics)

IJCAI 15 © Eric Xing @ CMU, 2015 185

Challenges in Model Parallelism
l  Recall Lasso regression:

IJCAI 15 © Eric Xing @ CMU, 2015

�

A huge number of parameters
(e.g.) J = 100M

X

yN

J

J

Model

=

min

�
ky −Xβk22 + λ

X

j

|βj |

186

l  Concurrent updates of may induce errors �

�1

�2

�1 �2

�1 �2

Sync

Sequential updates Concurrent updates

β
(t)
1 S(xT

1 y − x

T
1 x2β

(t�1)
2 , λ)

Induces parallelization error

Need to check x1
Tx2

before updating
parameters

Challenge 1:
Model Dependencies

IJCAI 15 © Eric Xing @ CMU, 2015 187

Challenge 2: Uneven
Convergence Rate on Parameters

l  Using CD, update multiple parameters in parallel
l  Shotgun [Bradley et al. 2011] updated are chosen uniformly at random
l  Guaranteed to converge under certain conditions
l  However, parameters converge at different rates

Converged at 1 rounds

Converged at 2 rounds

Converged at 50 rounds

Converged at 100 rounds

Synchronization barrier

Round

© Eric Xing @ CMU, 2015 IJCAI 15 188

Challenge 2: Uneven
Convergence Rate on Parameters

  Convergence time determined by slowest parameters
  How to make slowest parameters converge more

quickly?

IJCAI 15 © Eric Xing @ CMU, 2015

Parameters converge at similar rates Parameters converge at different rates

C
onverged

C
onverged

Remaining time to convergence Remaining time to convergence

189

Is there a middle ground for
model-parallel consistency?

l  Model partitioning can solve the two problems
l  Model dependencies and uneven parameter convergence

l  Again, existing ways are either safe but slow, or fast but risky
l  Option 1: process all data to find optimal model partitioning

l  Build full representation of data/model (e.g. via graph partitioning),
explicitlycompute all variable dependencies

l  Option 2: randomly partition model

IJCAI 15 © Eric Xing @ CMU, 2015

???

Graph Partition Random Partition

Is full consistency really
necessary for ML?

190

 Structure-Aware Parallelization
(SAP) [Lee et al., 2014; Kumar et al., 2014]

data
partition

model
partition

worker

data
partition

model
partition

worker

q Careful model-parallel execution:
q  Structure-aware scheduling
q  Variable prioritization
q  Load-balancing

data
partition

model
partition

worker

q Simple programming:
q  Schedule()
q  Push()
q  Pull()

IJCAI 15 © Eric Xing @ CMU, 2015 191

Schedule 1: Priority-based [Lee et al., 2014]
l  Choose params to update based on convergence progress

l  Example: sample params with probability proportional to their recent change
l  Approximately maximizes the convergence progress per round

IJCAI 15 © Eric Xing @ CMU, 2015

Priority-based scheduling Shotgun [Bradley et al. 2011]

�1 �2

�3 �4

�1 �2

�3 �4

�1 �2 �4

Uniform distribution

�3

p(j) /
⇣
δx

(t�1)
j

⌘2

+ ✏

192

Schedule 2: Block-based
(with load balancing) [Kumar et al., 2014]

IJCAI 15 © Eric Xing @ CMU, 2015

Partition data & model into d × d blocks
Run different-colored blocks in parallel

Blocks with less data run more iterations
Automatic load-balancing + better convergence

193

Structure-aware Dynamic Scheduler
(STRADS) [Lee et al., 2014, Kumar et al., 2014]

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables
to be Updated ~ p(j)

Check
Variable

Dependency

All Variables

Generate
Blocks of
Variables

STRADS
  Priority Scheduling

  Block scheduling

{βj} ⇠
⇣
δβ

(t�1)
j

⌘2

+ ⌘

[Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed
learning, AISTATS 2014]

IJCAI 15 © Eric Xing @ CMU, 2015 194

Avoids dependent parallel updates,
attains near-ideal convergence speed

l  STRADS+SAP achieves better speed and objective

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

0 50 100 150
0.5

1

1.5

2

2.5

80 ranks
9 machines

Seconds

R
M

SE

STRADS
GraphLab

0 1 2 3 4 5
x 104

−3.5

−3

−2.5 x 109
2.5M vocab, 5K topics

32 machines

Seconds

Lo
g−

Li
ke

lih
oo

d

STRADS
YahooLDA

Lasso MF LDA

IJCAI 15 © Eric Xing @ CMU, 2015 195

Efficient for large models

l  Model is partitioned => can run larger models on same
hardware

IJCAI 15 © Eric Xing @ CMU, 2015

Lasso MF LDA

196

Example Petuum-Scheduler
Program: Lasso

l  Application: feature selection in high dimensional data

IJCAI 15 © Eric Xing @ CMU, 2015 197

Example Petuum-Scheduler
Program: Lasso

Lasso schedule() has two parts:
1.  Priority selection:

2.  Dependency checking:

Discard parameters that violate the above condition

Once selection and checking are finished,
dispatch parameters to workers

…

Priority
Selection

Dependency
checking

Dispatch

Lasso Scheduler

U = {xj} ⇠
⇣
δx

(t�1)
j

⌘2

+ ✏

��aT
j ak

�� < ⇢ for all j 6= k 2 U

© Eric Xing @ CMU, 2015 IJCAI 15 198

{10, 12, … 20}

Machine 1

Example Petuum-Scheduler
Program: Lasso

Scheduler

…

1.  Compute schedule(),
then dispatching parameters
to be updated

2. Each machine computes
partial results for assigned
parameters using push()

3. Aggregating partial results
using pull()

Machine 2 Machine M

Priority-based scheduling
w/ dependency checker

f{a10} f{a12} f{a20}

ALL model
parameters

10

12

20

Priority-based
selection

{10} {12} {20}

© Eric Xing @ CMU, 2015 IJCAI 15 199

Example Petuum-Scheduler
Program: Lasso

l  For high-dim problems,
schedule() greatly improves
convergence rate of Lasso
l  Sharp drop due to prioritization

and dependency checking

l  Uneven, power-law-like
parameter convergence is a
big reason for the speedup
l  85% parameters converged in 5

iterations, but need 100+ iterations
for the remaining 15%!

IJCAI 15 © Eric Xing @ CMU, 2015

0 500 1000
0.05

0.1

0.15

0.2

0.25

100M features
9 machines

Seconds

O
bj

ec
tiv

e

STRADS
Lasso−RR

200

SScchhooooll ooff CCoommppuutteerr SScciieennccee

Theory of

(Ideal) ML Systems

IJCAI 15 © Eric Xing @ CMU, 2015 201

Theory of sequential ML
l  Sequential algos well studied in literature
l  What are desired properties for ML algorithm?
l  Convergence property

l  Optimization
l  Model param θ gets closer to true optimum θ* with more iterations or samples

l  MCMC and Stochastic Variational Inference
l  Learned distribution eventually matches true model posterior, after enough steps

l  Convergence may be “in expectation” – each step not guaranteed to get closer to
true optimum or posterior

l  Stability property
l  Optimization

l  Model parameter θ does not move much (low variance) when an optimum is reached

l  Important for stochastic algorithms, which may “fluctuate” near convergence
l  high stability => less fluctuation => easier to determine convergence

IJCAI 15 © Eric Xing @ CMU, 2015 202

Why study parallel ML theory?
l  What sequential guarantees still hold in parallel setting?

l  Under what conditions?

l  Growing body of literature for “ideal” parallel systems
l  Serializable– equivalent to single-machine execution in some sense
l  Focused on per-iteration analysis

l  Abstract away computational/comms cost
l  Predicting real-world running time requires these costs to be put back

l  “Real-world” parallel systems a work in progress
l  Asynchronous or bounded-async approaches can empirically work better than

synchronous approaches
l  Need additional theoretical analysis to understand why
l  Async => no serializability… why does it still work?

l  Parallelization requires data and/or model partitioning… many strategies exist
l  Want partitioning strategies that are provably correct
l  Need to determine when/where independence is violated, and what impact such violation

has on algorithm correctness
IJCAI 15 © Eric Xing @ CMU, 2015 203

Types of ML systems
l  Sequential (single-worker) learning

l  Non-parallel, but rich body of theoretical work

l  Methods for “ideal” systems
l  “Embarrassingly-parallel” (EP) learning

l  Distributed learning with little to no communication; easy to implement

l  Synchronous execution
l  Data-parallel execution serializable, conventional sequential guarantees usually hold
l  Can deploy on Hadoop & Spark without worrying about correctness
l  Expensive under load imbalance or stragglers! (curse of the last reducer)

IJCAI 15 © Eric Xing @ CMU, 2015 204

Types of ML systems
l  Sequential (single-worker) learning

l  Non-parallel, but rich body of theoretical work

l  Methods for real systems
l  Scheduled or slow-worker agnostic execution

l  Rebalance worker sample size to deal with load imbalance or stragglers

l  Bounded-asynchronous execution
l  Allow parameters to be stale, and workers to be (temporarily slow)
l  Why correct? Bounded loss of serializability => “close” to sequential execution

l  Model-parallelization
l  Data-parallel provably safe because of IID data assumption
l  Model parameters are not always independent of each other; must schedule to avoid

updating dependent parameters in parallel

IJCAI 15 © Eric Xing @ CMU, 2015 205

Correctness of Embarrassingly
Parallel Learning

l  Sequential algorithms known to converge

l  Embarrassingly Parallel learning compensates for non-ideal
behavior of real systems, by eliminating communication
l  No communication until end of algorithm
l  Intuition: just average parameters once all (independent) workers have finished

l  Does EP learning lead to convergence?
l  For MCMC?
l  For optimization, e.g. SGD?

IJCAI 15 © Eric Xing @ CMU, 2015 206

EP-MCMC convergence guarantee
[Neiswanger et al., 2014]

l  Explanation: the nonparametric estimator generated by
subposterior combination is consistent

l  Benefit: no comms needed by EP-MCMC; Hadoop-friendly
l  Drawback: subposterior combination requires costly product

of sums

© Eric Xing @ CMU, 2015 IJCAI 15 207

EP-Stochastic Gradient Descent
convergence guarantee
[Zinkevich et al., 2011]

l  Setting: perform SGD independently on k machines, each
using T data points. Then, average the parameter vectors w.
l  Theorem [Zinkevich et al., 2011]: Let be the output after T samples on each

of k machines, with learning rate η. Then, for constants G and λ, and for strongly
convex objective:

l  Explanation: EP-SGD parameter vector w is close to the true
minimum (in terms of objective function c(w))
l  More machines k => terms 1,2 shrink => faster convergence
l  However, term 3 eventually dominates => further parallelization does not help

IJCAI 15 © Eric Xing @ CMU, 2015 208

Weakness of EP Learning?
l  Multimodal or non-concave functions can be problematic

l  Average of two modes may not be a mode!
l  EP-SGD faces this issue in practice; many ML problems are non-convex/concave
l  EP-MCMC addresses this issue by subposterior combination, but this is

computationally expensive

IJCAI 15 © Eric Xing @ CMU, 2015

Worker 1 optimum Worker 2 optimum

Average of worker optima
209

Correctness of Synchronous
Learning

l  Embarrassingly Parallel learning converges…
l  But cannot handle multimodal/non-concave functions without special care
l  Weakness of averaging/communicating just once

l  Synchronous learning – workers can communicate many
times before termination
l  For example, at a barrier placed at the end of each iteration
l  Assumes “ideal” system properties:

l  Communication is not expensive relative to computation (algorithm execution)
l  Workers arrive at barrier at the same time (otherwise they must wait for each other)

l  Does Synchronous learning converge?
l  For optimization?
l  For MCMC?

IJCAI 15 © Eric Xing @ CMU, 2015 210

Synchronous ADMM
convergence guarantee
[Eckstein & Bertsekas, 1992; Boyd et al., 2010]

l  Setting: perform ADMM on f() + g(), where f, g are closed,
proper, and convex, and Lagrangian has a saddle-point

Theorem [Eckstein & Bertsekas, 1992; Boyd et al., 2010]

 ADMM iterates satisfy:
l  primal optimality:
l  dual convergence: for some dual maximizer
l  feasibility:
l  primal convergence: , if bounded or unique

l  Explanation: ADMM has same optimal solution as original
problem; convergence is eventually guaranteed
l  Accelerated variants converge as fast as O(1/t2) [Goldfarb and Ma, 2012]
l  After t iterations, [f(x(t))+g(x(t))] – [f(x*)+g(x*)] has shrunk to a factor of O(1/t2)

IJCAI 15 © Eric Xing @ CMU, 2015

f(wt
) + g(zt) ! p⇤ := min

Aw+Bz=c
f(w) + g(z)

r

t
:= Awt

+Bz

t − c ! 0

(w

t, zt;�t
)

(w

t, zt) ! (w

⇤, z⇤)

�t ! �⇤ �⇤

211

Synchronous Auxiliary Variable
MCMC Exactness Guarantee
[Dubey et al., 2013, 2014]

l  Recall: Auxiliary Variable Inference
l  Reformulate single model as P independent models, and then

parallelize over P workers
l  Dirichlet Process example:

IJCAI 15 © Eric Xing @ CMU, 2015 212

Synchronous Auxiliary Variable
MCMC Exactness Guarantee
[Dubey et al., 2013, 2014]

l  Auxiliary Variable reformulation is exact:

l  Explanation: AV reformulation has identical marginal
distribution over data xi => sampling from AV reformulation
equivalent to sampling original model

l  Advantage: Collapsed gibbs sampler for AV reformulation
can be correctly parallelized, unlike original model!

IJCAI 15 © Eric Xing @ CMU, 2015 213

Weakness of Synchronous
Learning?

l  Speedup rarely P-fold in practice. Two reasons:
l  Slow workers exist in real clusters

l  Causes: background jobs, other users’ jobs, datacenter environment, etc.
l  Faster workers wait at barriers for slower workers to catch up

l  Communication at barrier non-zero
l  Can take as long as, or even longer, than the computation done by workers

IJCAI 15 © Eric Xing @ CMU, 2015

1

1

1

1

Worker 1

Worker 2

Worker 3

Worker 4

2

2

2

2

3

3

3

3

214

SScchhooooll ooff CCoommppuutteerr SScciieennccee

Theory of Real
Distributed ML Systems

IJCAI 15 © Eric Xing @ CMU, 2015 215

Challenges in real-world
distributed systems

l  Real-world systems need asynchronous execution and load
balancing
l  Synchronous system: load imbalances => slow workers => waiting at barriers
l  Need load balancing to reduce load at slow workers
l  Need asynchronous execution so faster workers can proceed without waiting

l  Solution 1: key-value stores
l  Automatically manages communication with bounded asynchronous guarantees

l  Solution 2: scheduling systems
l  Automatically balances workload across workers; also performs prioritization and

dependency checking

IJCAI 15 © Eric Xing @ CMU, 2015 216

Communication strategies
l  Data parallel

l  Partition data across workers
l  Or fetch small batches of data in an online/streaming fashion

l  Communicate model as needed to workers
l  e.g. key-value store with bounded asynchronous model – theoretical consequences?

l  Model parallel
l  Partition model across workers

l  Model partitions can change dynamically during execution – theoretical consequences?

l  Send data to workers as needed (e.g. from shared database)
l  Or place full copy of data on each worker (since data is immutable)

l  Data + Model parallel?
l  Partition both data and model across workers
l  Wide space of strategies; need to reduce model and data communication

l  Reduce model communication by exploiting independence between variables
l  Reduce data and model communication via broadcast strategies, e.g. Halton sequence

IJCAI 15 © Eric Xing @ CMU, 2015 217

Bridging Models
for Parallel Programming

l  Bulk Synchronous Parallel [Valiant, 1990] is a bridging model
l  Bridging model specifies how/when parallel workers should compute, and how/

when workers should communicate
l  Key concept: barriers

l  No communication before barrier, only computation
l  No computation inside barrier, only communication

l  Computation is “serializable” – many sequential theoretical guarantees can be
applied with no modification

l  Bounded Asynchronous Parallel (BAP) bridging model
l  Key concept: bounded staleness [Ho et al., 2013; Dai et al., 2015]

l  Workers re-use old version of parameters, up to s iterations old – no need to barrier
l  Workers wait if parameter version older than s iterations

IJCAI 15 © Eric Xing @ CMU, 2015

1

1

1

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

2

2

3

3

3

3

218

Types of Convegence
Guarantees

l  Regret/Expectation bounds on parameters
l  Better bounds => better convergence progress per iteration

l  Probabilistic bounds on parameters
l  Similar meaning to regret/expectation bounds, usually stronger in guarantee

l  Variance bounds on parameters
l  Lower variance => higher stability near optimum => easier to determine

convergence

l  For data parallel?
l  For Model parallel?
l  For Data + model parallel?

IJCAI 15 © Eric Xing @ CMU, 2015 219

BAP Data Parallel:
Can we do value-bounding?

l  Idea: limit model parameter
difference Δθi-j = ||θi – θj|| between
machines i,j to < a threshold

l  Does not work in practice!
l  To guarantee that Δθi-j has not

exceeded the threshold, machines must
wait to communicate with each other

l  No improvement over synchronous
execution!

l  Rather than controlling parameter
difference via magnitude, what
about via iteration count?
l  This is the (E)SSP communication

model…

IJCAI 15 © Eric Xing @ CMU, 2015

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5 Worker 6

Worker 7

Δθ1-2

Δθ1-3

Δθ1-4

Δθ1-5
Δθ1-6

Δθ1-7

220

BAP Data Parallel:
(E)SSP model [Ho et al., 2013; Dai et al., 2015]

IJCAI 15 © Eric Xing @ CMU, 2015

Stale Synchronous Parallel (SSP)

  Allow threads to run at their own pace, without synchronization
  Fastest/slowest threads not allowed to drift >S iterations apart
  Threads cache local (stale) versions of the parameters, to reduce network syncing

Iteration 0 1 2 3 4 5 6 7 8 9

Thread 1 will always see
these updates

Thread 1

Thread 2

Thread 3

Thread 4

Staleness Threshold 3

Thread 1 may not see
these updates (possible error)

Consequence:

  Asynchronous-like speed, BSP-like ML correctness guarantees
  Guaranteed age bound (staleness) on reads
  Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached

1

Thread 1

Thread 2

Thread 3

Thread 4

2

2

3

3

3

3

1

Thread 1

Thread 2

Thread 3

Thread 4

3

5

6

221

BAP Data Parallel:
(E)SSP Regret Bound [Ho et al., 2013]

l  Goal: minimize convex
(Example: Stochastic Gradient)
l  L-­‐Lipschitz, problem diameter bounded by F2	

l  Staleness s, using P threads across all machines
l  Use step size

l  (E)SSP converges according to
l  Where T is the number of iterations

l  Note the RHS interrelation between (L, F) and (s, P)	

l  An interaction between theory and systems parameters

l  Stronger guarantees on means and variances can also be proven

Difference between
SSP estimate and true optimum

IJCAI 15 © Eric Xing @ CMU, 2015 222

Intuition:
Why does (E)SSP converge?

l  Number of missing updates bounded
l  Partial, but bounded, loss of serializability

l  Hence numeric error in parameter also bounded
l  Later in this tutorial – formal theorem
IJCAI 15 © Eric Xing @ CMU, 2015 223

SSP versus ESSP:
What is the difference?

l  ESSP is a systems improvement over SSP communication
l  Same maximum staleness guarantee as SSP
l  Whereas SSP waits until the last second to communicate…
l  … ESSP communicates updates as early as possible

l  What impact does ESSP have on convergence speed and
stability?

IJCAI 15 © Eric Xing @ CMU, 2015 224

BAP Data Parallel:
(E)SSP Probability Bound
[Dai et al., 2015]

 Theorem: Given L-Lipschitz objective ft and step
size ht,

 where
	

Let	
 observed	
 staleness	
 be	

Let	
 its	
 mean,	
 variance	
 be	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,	
 	

Explana�on:	
 the	
 (E)SSP	
 distance	
 between	
 true	
 op�ma	
 and	
 current	

es�mate	
 decreases	
 exponen�ally	
 with	
 more	
 itera�ons.	
 Lower	
 staleness	

mean,	
 variance	
 	
 	
 	
 	
 	
 ,	
 	
 	
 	
 	
 	
 improve	
 the	
 convergence	
 rate.	

	

Because	
 ESSP	
 has	
 lower	
 	
 	
 	
 	
 	
 	
 ,	
 	
 	
 	
 	
 ,	
 it	
 exhibits	
 	
 faster	
 convergence	
 than	

normal	
 SSP.	

IJCAI 15 © Eric Xing @ CMU, 2015 225

BAP Data Parallel:
(E)SSP Variance Bound
[Dai et al., 2015]

	
 Theorem:	
 the	
 variance	
 in	
 the	
 (E)SSP	
 es�mate	
 is	

	

	

	

	
 where	

	

	
 and	
 	
 	
 	
 	
 	
 	
 	
 	
 represents	
 5th	
 order	
 or	
 higher	
 terms	
 in	

	
 Explana�on:	
 The	
 variance	
 in	
 the	
 (E)SSP	
 parameter	
 es�mate	
 monotonically	

decreases	
 when	
 close	
 to	
 an	
 op�mum.	

Lower	
 (E)SSP	
 staleness	
 	
 	
 	
 	
 	
 	
 	
 =>	
 Lower	
 variance	
 in	
 parameter	
 =>	
 Less	

oscilla�on	
 in	
 parameter	
 =>	
 More	
 confidence	
 in	
 es�mate	
 quality	
 and	

stopping	
 criterion.	

	

ESSP	
 achieves	
 lower	
 average	
 staleness	
 than	
 SSP	
 =>	
 be�er	
 param	
 es�mates	

IJCAI 15 © Eric Xing @ CMU, 2015 226

ESSP vs SSP: Increased stability
helps empirical performance

l  Low-staleness SSP and ESSP converge equally well
l  But at higher staleness, ESSP is more stable than SSP

l  ESSP communicates updates early, whereas SSP waits until the last second
l  ESSP better suited to real-world clusters, with straggler and multi-user issues

IJCAI 15 © Eric Xing @ CMU, 2015 227

Scheduled Model Parallel:
Dynamic/Block Scheduling
[Lee et al. 2014, Kumar et al. 2014]

IJCAI 15 © Eric Xing @ CMU, 2015

Worker 1

Worker 2

Worker 3

Worker 4

Round 1 Round 2 Round 3 Round 4

Blocks of variables

Sync.
barrier

Sample Variables
to be Updated ~ p(j)

Check
Variable

Dependency

All Variables

Generate
Blocks of
Variables

STRADS
  Priority Scheduling

  Block scheduling

{βj} ⇠
⇣
δβ

(t�1)
j

⌘2

+ ⌘

228

Let , where P is the number of workers
Let M be the number of features
Let be the spectral radius of data matrix X

Explanation: Dynamic scheduling ensures the gap between
the objective at the t-th iteration and the optimal objective is
bounded by , which decreases as .
Therefore dynamic scheduling ensures convergence, and
more workers => faster convergence.

e :=
(P � 1)(⇢� 1)

M
< 1

⇢

t ! 1

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound
[Lee et al. 2014]

E[F (β(t)
)− F (β?

)]  CM

P (1− ✏)

1

t
= O

✓
1

P · t

◆

O
✓

1

P · t

◆

Theorem: the difference between the dynamic scheduling estimate β(t)
and the true optima β* is

IJCAI 15 © Eric Xing @ CMU, 2015 229

Scheduled Model Parallel:
Dynamic Scheduling Expectation Bound is near-ideal
[Xing et al. 2015]

Let be an ideal model-parallel schedule
Let be the parameter trajectory by ideal schedule
Let be the parameter trajectory by dynamic schedule

Explanation: Under dynamic scheduling, algorithmic progress is
nearly as good as ideal model-parallelism. Intuitively, it is because
both ideal and dynamic model-parallelism seek to minimize the
parameter dependencies crossing between workers.

Theorem: After t iterations, we have

E[|�(t)
ideal − �

(t)
dyn|]  C

2M

(t+ 1)

2
X

>
X

Sideal
()

�
(t)
ideal

�
(t)
dyn

IJCAI 15 © Eric Xing @ CMU, 2015 230

Scheduled Model Parallel:
Dynamic Scheduling Empirical Performance

l  Dynamic Scheduling for Lasso regression (SMP-Lasso):
almost-ideal convergence rate, much faster than random
scheduling (Shotgun-Lasso)

IJCAI 15 © Eric Xing @ CMU, 2015 231

Scheduled Data+Model Parallel:
Block-based Scheduling (with load balancing)
[Kumar et al. 2014]

IJCAI 15 © Eric Xing @ CMU, 2015

Partition data & model into d × d blocks
Run different-colored blocks in parallel

Blocks with less data run more iterations
Automatic load-balancing + better convergence

232

Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 1
[Kumar et al. 2014]

l  Variance between iterations Sn+1 and Sn is:

l  Explanation:
l  higher order terms (red) are negligible
l  => parameter variance decreases every iteration

l  Every iteration, the parameter estimates become more stable

IJCAI 15 © Eric Xing @ CMU, 2015 233

Scheduled Data+Model Parallel:
Block-based Scheduling Variance Bound 2
[Kumar et al. 2014]

l  Intra-block variance: Within blocks, suppose we update the
parameters using data points. Then, variance of after
those updates is:

l  Explanation:
l  Higher order terms (red) are negligible
l  => doing more updates within each block decreases parameter variance, leading

to more stable convergence

l  Load balancing by doing extra updates is effective
IJCAI 15 © Eric Xing @ CMU, 2015 234

Scheduled Data+Model Parallel:
Block-Scheduling Empirical Performance

l  Slow-worker Agnostic Block-Scheduling (Fugue) faster than:
l  Embarrassingly Parallel SGD (PSGD)
l  Non slow-worker Agnostic Block-Scheduling (Barriered Fugue)

l  Slow-worker Agnostic Block-Scheduling converges to a better
optimum than asynchronous GraphLab
l  Reason: more stable convergence due to block-scheduling

l  Task: Imagenet Dictionary Learning
l  630k images, 1k features

IJCAI 15 © Eric Xing @ CMU, 2015 235

Future work:
BAP Model-Parallel Guarantees

l  Model-parallel under synchronous setting:
l  Dynamic scheduling
l  Slow-worker block-based scheduling

l  Synchronous slow-worker problem solved by:
l  Load balancing (for dynamic scheduling)
l  Allow additional iters while waiting for other workers (slow-worker scheduling)

l  Work in progress: theoretical guarantees for bounded-async
model-parallel execution
l  Intuition: model-parallel sub-problems are nearly independent (thanks to

scheduling)
l  Perhaps better per-iteration convergence than bounded-async data-parallel

learning?

IJCAI 15 © Eric Xing @ CMU, 2015 236

What parameters to
communicate?

l  From a systems perspective, distributed learning is
challenging because networks are slow
l  Communication time can easily dominate useful computation time

l  Bounded-async strategies are one solution
l  Use stale parameters and async communication to reduce communication time

l  What else can we do to mitigate network slowness?
l  Idea: communicate fewer, but more important, parameters

IJCAI 15 © Eric Xing @ CMU, 2015 237

Communication Strategy 1:
Stochastic, Prioritized Sending
[Lee et al., 2014, Wei et al., 2015]

l  Petuum-STRADS model-parallelism
l  Sub-problems have nice property: only touch small fraction of parameters θ
l  Therefore, only send necessary subset of θ to each worker
l  Similar to model-circulation in topic model (LDA) research

l  Petuum-PS (Bösen) data-parallelism
l  In principle, data-parallel requires all parameters to be communicated…
l  … but can afford to be “more stale” on parameters that are changing slowly
l  Therefore, prioritize which params to send based on rate of change

l  Better final result compared to plain (E)SSP
l  Approximately 2x convergence speed on LDA algorithm

IJCAI 15 © Eric Xing @ CMU, 2015 238

Communication Strategy 2:
Sufficient Factor Broadcasting
[In publication]

l  Some ML models have matrix-shaped parameters
l  Sparse coding, multiclass LR, distance metric learning

l  Common property: for every data sample, the (stochastic)
parameter update is low-rank or rank-1:
l  Example: Θ(t+1) = Θ(t) + Σiuivi

T

l  where i indexes data samples, and u,v are vectors
l  uivi

T = ΔΘi, which is the update to Θ due to sample i

IJCAI 15 © Eric Xing @ CMU, 2015 239

Communication Strategy 2:
Sufficient Factor Broadcasting
[In publication]

l  Sending Θ is expensive; Θ can be very large:
l  e.g. Multiclass LR on 10000-class Imagenet challenge: |Θ| is almost 10 billion!

l  But the “sufficient factors” (u1,v1), …, (uM,vM) are much
smaller! (M is minibatch size)
l  For reasonable minibatch sizes M=100 to 1000, M sufficient factors is 3+ orders

of magnitude smaller than Θ!
l  Sufficient Factor Broadcasting (SFB) 4x faster runtime than sending full matrix Θ

(Full Matrix Sync, FMS)

IJCAI 15 © Eric Xing @ CMU, 2015 240

SScchhooooll ooff CCoommppuutteerr SScciieennccee

Open Research
Issues and Topics

IJCAI 15 © Eric Xing @ CMU, 2015 241

The Landscape of Big ML

IJCAI 15 © Eric Xing @ CMU, 2015 242

The Landscape of Big ML

Trend over last 5 years:
More cores, bigger models

IJCAI 15 © Eric Xing @ CMU, 2015 243

The Landscape of Big ML

IJCAI 15 © Eric Xing @ CMU, 2015 244

The Landscape of Big ML

Possible to learn bigger, more
powerful models with only
reasonable # of cores?

IJCAI 15 © Eric Xing @ CMU, 2015 245

Issue: When is Big Data useful?
l  Negative examples

l  “Simple” regression and classification models, with fixed parameter size
l  Intuition: decrease estimator variance has diminishing returns with more data.

Estimator eventually becomes “good enough”, and additional data/computation is
unnecessary

l  Positive examples
l  Topic models (internet/tech industry)
l  DNNs (Google, Baidu, Microsoft, Facebook, etc.)
l  Collaborative filtering (internet/tech industry)
l  Personalized models
l  Industry practitioners sometimes increase model size with more data

l  Conjecture: how much data is useful really depends on model
size/capacity

IJCAI 15 © Eric Xing @ CMU, 2015 246

Issue: Are Big Models useful?
l  In theory

l  Possibly, but be careful not to
over-extend

l  Beware “statistical strength”
l  “When you have large

amounts of data, your appetite
for hypotheses tends to get
even larger. And if it’s growing
faster than the statistical
strength of the data, then many
of your inferences are likely to
be false. They are likely to be
white noise.” –Michael Jordan

l  In practice
l  Some success stories - could

there be theory justification?

l  Many topics in topic models
l  Capture long-tail effects of

interest; improved real-world
task performance

l  Many parameters in DNNs
l  Improved accuracy in vision

and speech tasks
l  Publicly-visible success (e.g.

Google Brain)

IJCAI 15 © Eric Xing @ CMU, 2015 247

Issue: Inference Algorithms, or
Inference Systems?

l  View: focus on inference algorithm

l  Scale up by refining the algorithm
l  Given fixed computation, finish

inference faster

l  Some examples
l  Quasi-Newton algorithms for

optimization
l  Fast Gibbs samplers for topic

models [Yao et al. 2009, Li et al.
2014, Yuan et al. 2015, Zheng et
al, 2015]

l  Locality sensitive hashing for
graphical models [Ahmed et al.
2012]

l  View: focus on distributed systems
for inference

l  Scale up by using more machines
l  Not trivial: real clusters are

imperfect and unreliable; Hadoop
not a fix-all

l  Some examples
l  Spark
l  GraphLab
l  Petuum

IJCAI 15 © Eric Xing @ CMU, 2015 248

Issue: Theoretical Guarantees
and Empirical Performance

l  View: establishing theoretical
guarantees gives practitioners
confidence
l  Motivated by empirical science,

where guarantees are paramount

l  Example: Lasso sparsistency and
consistency [Wainwright, 2009]
l  Theory predicts how many

samples n needed for a Lasso
problem with p dimensions and k
non-zero elements

l  Simulation experiments show very
close match with theory

l  Is there a way to analyze more
complex models?

l  View: empirical, industrial
evidence can provide strong
driving force for experimental
research
l  Motivated by industrial practice,

particularly at internet companies

l  Example: AB testing in industry
l  Principled means of testing new

algorithms, feature engineering; by
experimenting on user base

l  Determine if new method makes a
significant difference to click-
through rate, user adoption, etc.

IJCAI 15 © Eric Xing @ CMU, 2015 249

Open research topics
l  Future of data-, model-parallelism, and other ML properties

l  New properties, principles still undiscovered
l  Potential to accelerate ML beyond naive strategies

l  Deep analysis of BigML systems still limited to few ML algos
l  Model of ML execution under error due to imperfect system?

l  How to express more ML algorithms in table form (Spark,
Petuum), or graph form (GraphLab)
l  Tree-structured algorithms? Infinite-dimensional Bayesian nonparametrics?
l  What are the key elements of a generic ML programming interface?

IJCAI 15 © Eric Xing @ CMU, 2015 250

Acknowledgements

Garth Gibson Greg Ganger

Jin Kyu Kim Seunghak Lee Jinliang Wei

Wei Dai Pengtao Xie
Xun Zheng

Abhimanu
Kumar

Phillip Gibbons James Cipar

IJCAI 15 © Eric Xing @ CMU, 2015 251

Thank You!

IJCAI 15 © Eric Xing @ CMU, 2015 252

