
Multi-Agent Oriented Programming
(with JaCaMo)

O. Boissier1 R.H. Bordini2 J.F. Hübner3

A. Ricci4 J.S. Sichman5

1. Ecole Nationale Supérieure de Mines (ENSMSE), Saint Ettiene, France

2. Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

3. Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil

4. Università di Bologna (UNIBO), Bologna, Italy

5. Universidade de São Paulo (USP), São Paulo, Brazil

IJCAI 2015 Tutorial
Buenos Aires, Argentina, July 2015

http://www.emse.fr/~boissier/
http://www.das.ufsc.br/~jomi
http://www.das.ufsc.br/~jomi
https://apice.unibo.it/xwiki/bin/view/AlessandroRicci/
http://www.pcs.usp.br ~jaime

Tutorial Organisation

I Introduction
I AOP – Agent Oriented Programming: Jason
I EOP – Environment Oriented Programming: CArtAgO
I OOP – Organisation Oriented Programming: Moise
I Conclusions

2

In collaboration with

å Brazil

I L. Coutinho @ Universidade de São Paulo & Universidade Federal
do Maranhão, Brazil

å France

I G. Picard, ENS Mines St-Etienne (gauthier.picard@emse.fr)
I M. Hannoun, B. Gâteau, G. Danoy, R. Kitio, C. Persson, R.
Yaich @ ENS Mines St-Etienne, France

å Italy

I M. Piunti, A. Santi, Università degli studi di Bologna - DEIS,
Bologna (a.ricci@unibo.it)

å Romania

I A. Ciortea, A. Sorici, Politehnica University of Bucharest

3

Acknowledgements

I Dagstuhl Seminars:
I #12342 (2012), #08361 (2008), #06261 (2006)

I Bilateral Projects:
I USP-COFECUB 98-04
I CMIRA Rhône-Alpes Region 2010

I French National Project:
I FORTRUST Project ANR 06-10
I ETHICAA Project ANR 14-18

4

Introduction

Outline

Introduction
Context & Requirements
Multi-Agent Systems (Our view)

Definitions
Conceptual Framework

Multi-Agent Oriented Programming (MAOP)
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

MAOP Perspective: the JaCaMo Platform

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

6

Context

Current Applications are:
I Open, non centralized & distributed socio-technical systems,
I Operating into Dynamic, Knowledge Intensive, Complex

Environments
I Requiring:

I Local/global computation
I Flexibility (micro-macro or local-global loops)
I Socio-technical integration (Trust, Policy/Norms, Legal knowledge,
...)

7

Context (e.g. Smart City M2M Infrastructure)

European Telecommunications Standards Institute (ETSI) view on M2M infrastructure

I Multiple abstraction levels / Multiple decision mechanisms

I Connection to the Physical World: Sensing/Acting, Reactive/Pro-active
M2M Infrastructure

I Combination of dynamics from Applications and M2M Domains
(Applications/SLAs, M2M Infrastructure, Environment/Sensors)

8

Context (e.g. Smart Building)

I Smart co-working space (e.g. school, office building, ...) where people
can book and use rooms according to their needs, location, current
occupancy schedule

I Connection to the physical world: rooms are (i) equipped with
projectors, white-boards, TV sets, ..., (ii) tagged by several usage
categories (meeting, teaching, ...), (iii) augmented with sensors
(temperature, light, presence, ...) and actuators

I Adaptive Coordination for managing allocation and functioning of rooms

9

Context (e.g. Ambient Assisted Living)

AAL collaboration with DOMUS Lab. [Castebrunet et al., 2010]

I Support of Human activities (representation, monitoring,
adapting/reacting/anticipating) in several places (i.e. users should be
assisted even if visiting other AAL persons in other apartment)

I Connection to the physical and human worlds (global configuration of
the provided services, local smart place configuration & the user personal
configuration that moves along with the inhabitant)

10

Requirements

I Open, Non centralized & Distributed Socio-Technical Systems
I Operating into Dynamic, Knowledge Intensive, Complex Environments
I Requiring Local/global computation, Flexibility (micro-macro loops) Socio-technical integration (Trust, Policy/Norms, Legal

knowledge), ...

How to engineer such applications?

f

A

D

C

G

E

B

F

H

Frank

George

EliseCarl

Alice

Dave

Bob

Helen

11

Outline

Introduction
Context & Requirements
Multi-Agent Systems (Our view)

Definitions
Conceptual Framework

Multi-Agent Oriented Programming (MAOP)
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

MAOP Perspective: the JaCaMo Platform

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

12

Multi-Agent Systems (MAS)

An organisation of autonomous agents interacting with each other
within a shared environment

I agents can be: software/hardware, coarse-grain/small-grain,
heterogeneous/homogeneous, reactive/pro-active entities

I environment can be virtual/physical, passive/active,
deterministic/non deterministic, ...

I interaction is the motor of dynamic in MAS. Interaction can be:
direct/indirect between agents, interaction between agent and
environment

I organisation can be pre-defined/emergent, static/adaptive,
open/closed, ...

13

Multi-Agent Systems (MAS)

An organisation of autonomous agents interacting with each other
within a shared environment

I agents can be: software/hardware, coarse-grain/small-grain,
heterogeneous/homogeneous, reactive/pro-active entities

I environment can be virtual/physical, passive/active,
deterministic/non deterministic, ...

I interaction is the motor of dynamic in MAS. Interaction can be:
direct/indirect between agents, interaction between agent and
environment

I organisation can be pre-defined/emergent, static/adaptive,
open/closed, ...

13

Multi-Agent Systems (MAS)

An organisation of autonomous agents interacting with each other
within a shared environment

I agents can be: software/hardware, coarse-grain/small-grain,
heterogeneous/homogeneous, reactive/pro-active entities

I environment can be virtual/physical, passive/active,
deterministic/non deterministic, ...

I interaction is the motor of dynamic in MAS. Interaction can be:
direct/indirect between agents, interaction between agent and
environment

I organisation can be pre-defined/emergent, static/adaptive,
open/closed, ...

13

Multi-Agent Systems (MAS)

An organisation of autonomous agents interacting with each other
within a shared environment

I agents can be: software/hardware, coarse-grain/small-grain,
heterogeneous/homogeneous, reactive/pro-active entities

I environment can be virtual/physical, passive/active,
deterministic/non deterministic, ...

I interaction is the motor of dynamic in MAS. Interaction can be:
direct/indirect between agents, interaction between agent and
environment

I organisation can be pre-defined/emergent, static/adaptive,
open/closed, ...

13

Multi-Agent Systems (MAS)

An organisation of autonomous agents interacting with each other
within a shared environment

I agents can be: software/hardware, coarse-grain/small-grain,
heterogeneous/homogeneous, reactive/pro-active entities

I environment can be virtual/physical, passive/active,
deterministic/non deterministic, ...

I interaction is the motor of dynamic in MAS. Interaction can be:
direct/indirect between agents, interaction between agent and
environment

I organisation can be pre-defined/emergent, static/adaptive,
open/closed, ...

13

Multi-Agent Systems (MAS)

An organisation of autonomous agents interacting with each other
within a shared environment

MAS is not a simple set of agents

I agents can be: software/hardware, coarse-grain/small-grain,
heterogeneous/homogeneous, reactive/pro-active entities

I environment can be virtual/physical, passive/active,
deterministic/non deterministic, ...

I interaction is the motor of dynamic in MAS. Interaction can be:
direct/indirect between agents, interaction between agent and
environment

I organisation can be pre-defined/emergent, static/adaptive,
open/closed, ...

13

MAS Principles

Agent Principles (Micro perspective)

I Reactive, Pro-Active & Social entities

I Autonomy: agents may exhibit activities that are not the one expected by the
other agents in the system

I Delegation: agents may receive some control over their activities (loosely
coupled entities)

Multi-Agent System Principles (Macro perspective)

I Distribution of knowledge, resources, reasoning/decision capabilities

I Decentralisation of control, authority

I Agreement technologies, Coordination models and mechanisms to install
coordination among the autonomous agents

I Interlacement of emergent, social order, normative functioning

14

MAS Conceptual framework / Dimensions

BELIEFS
GOALS
PLANS

INTERNAL
EVENTS

ACTIONSPERCEPTIONS

AGENTS

MISSIONS

ROLES

DEONTIC RELATIONS

GROUPS

NORMS

SANCTIONS
REWARDS

ORGANISATIONS

RESOURCES

SERVICES OBJECTS

ENVIRONMENTS

COMMUNICATION
LANGUAGES

INTERACTION
PROCOLS

SPEECH
ACTS

INTERACTIONS

TOPOLOGY

TOOLS

cf. VOWELS [Demazeau, 1995,
Demazeau, 1997]

I Agents: abstractions for the
definition of the
decision/reasoning entities
architectures

I Environment: abstractions for
structuring resources, processing
entities shared among the agents

I Interaction: abstractions for
structuring interactions among
entities

I Organisation: abstractions for
structuring and ruling the sets of
entities within the MAS

; A rich set of abstractions for capturing applications complexity!

15

MAS Conceptual framework / Dynamics

BELIEFS
GOALS
PLANS

INTERNAL
EVENTS

ACTIONSPERCEPTIONS

AGENTS

MISSIONS

ROLES

DEONTIC RELATIONS

GROUPS

NORMS

SANCTIONS
REWARDS

ORGANISATIONS

RESOURCES

SERVICES OBJECTS

ENVIRONMENTS

COMMUNICATION
LANGUAGES

INTERACTION
PROCOLS

SPEECH
ACTS

INTERACTIONS

TOPOLOGY

TOOLS

I Each dimension has its own
dynamics

I Dynamics may be interlaced into
bottom-up / top-down global
cycles

I Coordination of these dynamics
may be programmed into one or
several dimensions
[Boissier, 2003]

; A rich palette of possible dynamics & coordination!!

16

MAS Programming

BELIEFS
GOALS
PLANS

INTERNAL
EVENTS

ACTIONSPERCEPTIONS

AGENTS

MISSIONS

ROLES

DEONTIC RELATIONS

GROUPS

NORMS

SANCTIONS
REWARDS

ORGANISATIONS

RESOURCES

SERVICES OBJECTS

ENVIRONMENTS

COMMUNICATION
LANGUAGES

INTERACTION
PROCOLS

SPEECH
ACTS

INTERACTIONS

TOPOLOGY

TOOLS

AOP OOP

EOPIOP

I Agent Oriented Programming
[Shoham, 1993]

I Environment Oriented
Programming [Ricci et al., 2011]

I Interaction Oriented
Programming [Huhns, 2001]

I Organisation Oriented
Programming
[Pynadath et al., 1999]

I In these approaches, some dimensions lose their control & visibility!
I Integrating the dimensions into one programming platform is not so

easy!
I Volcano platform [Ricordel and Demazeau, 2002], MASK
platform [Occello et al., 2004], MASQ [Stratulat et al., 2009],
Situated E-Institutions [Campos et al., 2009], ...)

17

MAS Programming

BELIEFS
GOALS
PLANS

INTERNAL
EVENTS

ACTIONSPERCEPTIONS

AGENTS

MISSIONS

ROLES

DEONTIC RELATIONS

GROUPS

NORMS

SANCTIONS
REWARDS

ORGANISATIONS

RESOURCES

SERVICES OBJECTS

ENVIRONMENTS

COMMUNICATION
LANGUAGES

INTERACTION
PROCOLS

SPEECH
ACTS

INTERACTIONS

TOPOLOGY

TOOLS
MAOP

Challenge

Shifting from an A/E/I/O oriented approaches to a Multi-Agent Oriented
approach

I keeping alive the concepts, dynamics and coordinations of the A, E, I
and O dimensions

in order to address the Intelligent Environment requirements.

18

Outline

Introduction
Context & Requirements
Multi-Agent Systems (Our view)

Definitions
Conceptual Framework

Multi-Agent Oriented Programming (MAOP)
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

MAOP Perspective: the JaCaMo Platform

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

19

Seamless Integration of A & E & I & O

Artifact

Operation Agent

Workspace

Environment

Manual

has

use

generateupdate

create
dispose

link, unlink

consult

create
join
quit

Belief

Goal

Plan

External Action Internal Action

create
delete

adopt
leave

create
delete

commit
leave

focus,
unfocus

primitive operationscomposition
association dependencyconcept mapping

Trigger event
Observable Property

dimension border

Action

Observable Event

achieve

Environment
Dimension

Agent
Dimension

Organisation
Dimension

Cardinalities are not represented

Content

Message

SpeechAct

Interaction
Dimension

send
receive

focus,
unfocus

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

JaCaMo Meta-model [Boissier et al., 2011], based on Cartago [Ricci et al., 2009b],

Jason [Bordini et al., 2007c],Moise [Hübner et al., 2009] meta-models

20

Agent meta-model

Agent

Belief

Goal

Plan

External Action Internal Action

agent's actionscomposition
association

dependency
concept mapping

Trigger event

dimension border

Action

Agent
Dimension

Cardinalities are not represented

Based on Jason meta-models [Bordini et al., 2007c]

21

Agent example I

Example (Giacomo Agent Code)

!have_a_house. // Initial Goal
/* Plan */
+!have_a_house <- !contract;

!execute.

Example (companyX Agent Code)

my_price(300). // initial belief
/* plans for contracting phase */
// there is a new value for current bid
+currentBid(V)

: not i_am_winning(Art) & // I am not the current winner
my_price(P) & P < V // I can offer a better bid

<- .bid(P). // place my bid offering a cheaper service

22

Agent & Agent Interaction meta-model

Agent

Belief

Goal

Plan

External Action Internal Action

Trigger event

Action

Agent
Dimension

Content

Message

SpeechAct

Interaction
Dimension

23

Agent’s dynamics

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

24

Environment meta-model

Artifact

Operation

Workspace

Environment

Manual

has

generateupdate

Observable Property Observable Event

Based on A&A meta-model [Omicini et al., 2008]

25

Auction Artifact

Example

public class AuctionArt extends Artifact {
@OPERATION void init(String taskDs, int maxValue) {

defineObsProperty("task”,taskDs); // task description
defineObsProperty("maxValue”, maxValue); // max. value
// current best bid (lower service price)
defineObsProperty("currentBid”, maxValue);
// current winning agent ID
defineObsProperty("currentWinner”, "no_winner");

}

// places a new bid for doing the service for price p
// (used by company agents to bid in a given auction)
@OPERATION void bid(double bidValue) {

ObsProperty opCurrentValue = getObsProperty("currentBid");
ObsProperty opCurrentWinner = getObsProperty("currentWinner");
if (bidValue < opCurrentValue.intValue()) {

opCurrentValue.updateValue(bidValue);
opCurrentWinner.updateValue(getOpUserName());

}
} }

26

A & E Interaction meta-model

Artifact

Operation Agent

Workspace

Environment

Manual

has

use

generateupdate

create
dispose

link, unlink

consult

create
join
quit

Belief

Goal

Plan

External Action Internal Action

focus,
unfocus

Trigger event
Observable Property

Action

Observable Event

Environment
Dimension

Agent
Dimension

focus,
unfocus

27

Giacomo Agent Code I

Example

!have_a_house. // Initial Goal
/* Plans */
+!have_a_house <- !contract; !execute.
+!contract <- !create_auction_artifacts; !wait_for_bids.
+!create_auction_artifacts

<- !create_auction_artifact("SitePreparation", 2000);
!create_auction_artifact("Floors", 1000);
!create_auction_artifact("Walls", 1000);
!create_auction_artifact("Roof", 2000);
!create_auction_artifact("WindowsDoors", 2500);
!create_auction_artifact("Plumbing", 500);
!create_auction_artifact("ElectricalSystem", 500);
!create_auction_artifact("Painting", 1200).

Example

28

Giacomo Agent Code II

+!create_auction_artifact(Task,MaxPrice)
<- .concat("auction_for_",Task,ArtName);

makeArtifact(ArtName, "tools.AuctionArt", [Task, MaxPrice],
ArtId);

focus(ArtId).
-!create_auction_artifact(Task,MaxPrice)[error_code(Code)]

<- .print("Error creating artifact ", Code).
+!wait_for_bids

<- println("Waiting the bids for 5 seconds...");
.wait(5000); // use intern deadline of 5 sec to close auctions
!show_winners.

+!show_winners
<- for (currentWinner(Ag)[artifact_id(ArtId)]) {

?currentBid(Price)[artifact_id(ArtId)]; // check current bid
?task(Task)[artifact_id(ArtId)]; // and task it is for
println("Winner of task ", Task," is ", Ag, " for ", Price)

}.

29

companyA Agent Code I

Example

my_price(1500). // initial belief
!discover_art("auction_for_Plumbing"). // initial goal
i_am_winning(Art) :- .my_name(Me) &

currentWinner(Me)[artifact_id(Art)].

/* plans for contracting phase */
+!discover_art(ToolName)

<- joinWorkspace("HouseBuildingWsp");
lookupArtifact(ToolName,ToolId);
focus(ToolId).

// there is a new value for current bid
+currentBid(V)[artifact_id(Art)]

: not i_am_winning(Art) & // I am not the current winner
my_price(P) & P < V // I can offer a better bid

<- bid(math.max(V-150, P))[artifact_id(Art)].
/* plans for execution phase */
...

30

Environment’s dynamics

Artifact life-cycle

I Creation/Deletion
I Activation/Execution/Fail or Success/Deactivation of an Operation
I Linking / Unlinking

Workspace life-cycle

I Creation/Deletion of a workspace
I Creation/Deletion of Artifacts
I Creation/Deletion & Entry/Exit of Agents

31

Outcomes of A & E Integration

I Agents with dynamic action repertoire, extended/reshaped by
agents themselves

I Uniform implementation of any mechanisms (e.g. coordination
mechanism) in terms of actions/percepts

I No need to extend agents with special purpose primitives

I Exploiting a new type of agent modularity, based on
externalization [Ricci et al., 2009a]

32

Organisation meta-model

MissionRole

Group

Norm
GoalLink

Organisation

Social Scheme

SimplifiedMoise meta-model [Hübner et al., 2009]

33

Example: Organisation Structural Specification

Graphical representation ofMoise Struct. Spec.
34

Example: Organisation Functional Specification

Graphical representation ofMoise Func. Spec.

35

Example: Organisation Normative Specification

norm modality role mission / goals

n1 Obl house_owner house built
n2 Obl site_prep_contractor site prepared
n3 Obl bricklayer floors laid, walls built
n4 Obl roofer roof built
n5 Obl window_fitter windows fitted
n6 Obl door_fitter doors fitted
n7 Obl plumber plumbing installed
n8 Obl electrician electrical system installed
n9 Obl painter interior painted, exterior painted

Simplified representation ofMoise Norm. Spec.

36

A & E & O Interaction meta-model

Artifact

Operation Agent

Workspace

Environment

Manual

has

use

generateupdate

create
dispose

link, unlink

consult

create
join
quit

Belief

Goal

Plan

External Action Internal Action

create
delete

adopt
leave

create
delete

commit
leave

focus,
unfocus

primitive operationscomposition
association dependencyconcept mapping

Trigger event
Observable Property

dimension border

Action

Observable Event

achieve

Environment
Dimension

Agent
Dimension

Organisation
Dimension

Cardinalities are not represented

Content

Message

SpeechAct

Interaction
Dimension

send
receive

focus,
unfocus

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

Based on Cartago [Ricci et al., 2009b], Jason [Bordini et al., 2007c],
Moise [Hübner et al., 2009] meta-models

37

A & O Integration

I Instrumenting Organisation Management by dedicated
Organisational Artifacts

I Mapping of the organisational state onto artifacts computational
state

I Encapsulation of organisational functionalities by suitably designed
artifacts providing organisational operations

; Reification of organisation management actions/perceptions by
actions/percepts on the artifacts

I Extensible set of organisational artifacts:
I Openness Management Artifact [Kitio, 2011]
I Reorganisation Artifact [Sorici, 2011]
I Evaluation Artifact (kind-of reputation
artifact) [Hübner et al., 2009]

I Communication management Artifact [Ciortea, 2011]

38

A & O Integration (2)

role mission
schemegroup

Belief
Base Intentions

Org.
Reasoning

Mechanisms

Plan
Library

op2
op1

op2
op1

op2
op1

Org.
Artifacts Env.

Artifacts

I Exploit the uniform access to
artifacts

; Agents may be aware of the
Organisation by the way of:

I organisational events
I organisational actions

; Agents can reason on the
organisation:

I to achieve organisational goals
I by developing organisational
plans

39

Example

Example (Adoption of Role)

...
+!discover_art(ToolName)
<- joinWorkspace("HouseBuildingWsp");

lookupArtifact(ToolName,ToolId);
focus(ToolId).

+!contract("SitePreparation",GroupBoardId)
<- adoptRole(site_prep_contractor)

focus(GroupBoardId).

+!site_prepared
<- ... // actions to prepare the site..

40

E & O Integration

role mission
schemegroup

op2
op1

Org. Artifacts Env.
Artifacts

count-as

count-as

op2
op1

op2
op1

enact

I Env. Artifacts provide operations
on shared resources

I Org. Artifacts provide
organisational operations

I Both artifacts bound by count-as,
enact constitutive
rules [Piunti et al., 2009a,
de Brito et al., 2012]

; Org-agnostic agents may indirectly
act on the organisation

; Environment can act on the
organisation

; Organisation is embodied, situated
in the environment

41

Count-as rules [de Brito et al., 2012]

Example

/* If an auction "Art" is finished, its winner ("Winner")
plays a role "Role", if it doesn’t adopted it yet */

*auctionStatus(closed)[source(Art)]
count-as

play(Winner,Role,hsh_group)[source(hsh_group)]
in

currentWinner(Winner)[source(Art)] &
not(Winner==no_winner) &
auction_role(Art,Role).

/* The occurrence of the event "prepareSite" means the
achievement of organisational goal "site_prepared" */

+ prepareSite[agent_name(Ag),artifact_name(housegui)]
count-as

goalState(bhsch,site_prepared,Ag,Ag,satisfied)[source(bhsch)].

42

Organisation’s dynamics (triggered by Agents, Environment)

I Organisation life-cycle
I Entrance/Exit of an agent
I Creation/Deletion of an Organisation entity
I Change of Organisation specification

I Structural Organisation life-cycle
I Creation/Deletion of a group
I Adoption/Release of a role

I Functional Organisation life-cycle
I Creation/End of a schema
I Commitment/Release of a mission
I Change of a global goal state

I Normative Organisation life-cycle
I Activation/De-activation of obligation
I Fulfilment/Violation/Sanction

43

Outcomes of A & E & O Integration

I Normative deliberative agents
I possibility to define mechanisms for agents to evolve within an
organisation/several organisations

I possibility to define proper mechanisms for deliberating on the
internalisation/adoption/violation of norms

I Reorganisation, adaptation of the organisation
I possibility to define proper mechanisms for
diagnosing/evaluating/refining/defining organisations

I “Deliberative” Organisations
I possibility to define dedicated organisational strategies for the
regulation/adaptation of the organisation behaviour (organisational
agents)

I “Embodied” Organisation / Organisation Aware Environment
I possibility to connect organisation to environment

44

A MAOP meta-model

Artifact

Operation Agent

Workspace

Environment

Manual

has

use

generateupdate

create
dispose

link, unlink

consult

create
join
quit

Belief

Goal

Plan

External Action Internal Action

create
delete

adopt
leave

create
delete

commit
leave

focus,
unfocus

primitive operationscomposition
association dependencyconcept mapping

Trigger event
Observable Property

dimension border

Action

Observable Event

achieve

Environment
Dimension

Agent
Dimension

Organisation
Dimension

Cardinalities are not represented

Content

Message

SpeechAct

Interaction
Dimension

send
receive

focus,
unfocus

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

JaCaMo Meta-model [Boissier et al., 2011], based on Cartago [Ricci et al., 2009b],

Jason [Bordini et al., 2007c],Moise [Hübner et al., 2009] meta-models

45

Outline

Introduction
Context & Requirements
Multi-Agent Systems (Our view)

Definitions
Conceptual Framework

Multi-Agent Oriented Programming (MAOP)
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

MAOP Perspective: the JaCaMo Platform

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

46

JaCaMo Platform http://jacamo.sourceforge.net

Java Platform

CArtAgO, Jason, NOPL engine

Operating System

artifact(SB,SchemeBoard,ID1)
artifact(CONS,Console,ID2)
...

WorkspaceArtifact

linkArtifacts
lookupArtifact
(make/dispose)Artifact
quitWorkspace

workspace(WspName,ID)
...

NodeArtifact

createWorkspace
joinWorkspace
joinRemoteWorkspace
shutdownNode

Specification
Groups
Players
Goals
Obbligations

SchemeBoard

commintMission
leaveMission
setGoalAchieved

Console

print
println

Specification
Schemes
Goals

GroupBoard

leaveRole
addScheme
removeScheme

adoptRole

Agent

Plan

......

Agent dimension

Artifact

Operations

......

Environment dimension Organisation dimension

Mission

Goal

......

JaCaMo workspace

Platform
level

Execution
 level

Conceptual
level

47

http://jacamo.sourceforge.net

Integration of Multi-Agent technologies

I Agent: Jason agents [Bordini et al., 2007c]
I Environment: CArtAgO platform [Ricci et al., 2009b]
I Organisation: Moise framework with the extended/refactored

version of theMoise OMI: ORA4MAS [Hübner et al., 2009]
I Interaction: based on tight integration between Jason and KQML

or ACL/FIPA

Dimensions are integrated with dedicated bridges:
I A–E (c4Jason, c4Jadex [Ricci et al., 2009b])
I E–O (count-as/enact rules [Piunti et al., 2009a])
I A–O is for free (thanks to ORA4MAS). Strategies and reasoning

capabilities from J -Moise+ [Hübner et al., 2007] can be reused.

Open to integrate other Multi-Agent Technologies

48

Integration with other technologies

I Web 2.0
I implementing Web 2.0 applications
I http://jaca-web.sourceforge.net

I Android Platforms
I implementing mobile computing applications on top of the Android
platform

I http://jaca-android.sourceforge.net
I Web Services

I building SOA/Web Services applications
I http://cartagows.sourceforge.net

I Arduino Platforms
I building “Web of Things” Applications
I http://jacamo.sourceforge.net

I Semantic Technologies
I JaSA: Semantically Aware Agents
I http://cartago.sourceforge.net

49

http://jaca-web.sourceforge.net
http://jaca-android.sourceforge.net
http://cartagows.sourceforge.net
http://jacamo.sourceforge.net
http://cartago.sourceforge.net

Agent Oriented Programming
— AOP —

Literature I

Books: [Bordini et al., 2005], [Bordini et al., 2009]

Proceedings: ProMAS, DALT, LADS, EMAS, ...

Surveys: [Bordini et al., 2006], [Fisher et al., 2007] ...

Languages of historical importance: Agent0 [Shoham, 1993],
AgentSpeak(L) [Rao, 1996], MetateM [Fisher, 2005],
3APL [Hindriks et al., 1997],
Golog [Giacomo et al., 2000]

Other prominent languages:
Jason [Bordini et al., 2007b], Jadex [Pokahr et al., 2005],
2APL [Dastani, 2008a], GOAL [Hindriks, 2009],
JACK [Winikoff, 2005], JIAC, AgentFactory

But many others languages and platforms...

51

Some Languages and Platforms

Jason (Hübner, Bordini, ...); 3APL and 2APL (Dastani, van Riemsdijk,
Meyer, Hindriks, ...); Jadex (Braubach, Pokahr); MetateM (Fisher,
Guidini, Hirsch, ...); ConGoLog (Lesperance, Levesque, ... / Boutilier –
DTGolog); Teamcore/ MTDP (Milind Tambe, ...); IMPACT
(Subrahmanian, Kraus, Dix, Eiter); CLAIM (Amal El
Fallah-Seghrouchni, ...); GOAL (Hindriks); BRAHMS (Sierhuis, ...);
SemantiCore (Blois, ...); STAPLE (Kumar, Cohen, Huber); Go! (Clark,
McCabe); Bach (John Lloyd, ...); MINERVA (Leite, ...); SOCS
(Torroni, Stathis, Toni, ...); FLUX (Thielscher); JIAC (Hirsch, ...);
JADE (Agostino Poggi, ...); JACK (AOS); Agentis (Agentis Software);
Jackdaw (Calico Jack); ...

52

The State of Multi-Agent Programming

I Already the right way to implement MAS is to use an AOSE
methodology (Prometheus, Gaia, Tropos, ...) and an MAS
programming language!

I Many agent languages have efficient and stable interpreters —
used extensively in teaching

I All have some programming tools (IDE, tracing of agents’ mental
attitudes, tracing of messages exchanged, etc.)

I Finally integrating with social aspects of MAS
I Growing user base

53

Agent Oriented Programming
Features

I Reacting to events × long-term goals
I Course of actions depends on circumstance
I Plan failure (dynamic environments)
I Social ability
I Combination of theoretical and practical reasoning

54

Agent Oriented Programming
Fundamentals

I Use of mentalistic notions and a societal view of computation
[Shoham, 1993]

I Heavily influence by the BDI architecture and reactive planning
systems [Bratman et al., 1988]

55

BDI architecture [Wooldridge, 2009]

1 begin
2 while true do
3 p← perception()
4 B ← brf (B,p) ; // belief revision
5 D← options(B, I) ; // desire revision
6 I ← filter(B,D, I) ; // deliberation
7 execute(I) ; // means-end

56

BDI architecture [Wooldridge, 2009]

1 while true do
2 B ← brf (B,perception())
3 D← options(B, I)
4 I ← filter(B,D, I)
5 π← plan(B, I ,A)
6 while π 6= ∅ do
7 execute(head(π))
8 π← tail(π)

57

BDI architecture [Wooldridge, 2009]

1 while true do
2 B ← brf (B,perception())
3 D← options(B, I)
4 I ← filter(B,D, I)
5 π← plan(B, I ,A)
6 while π 6= ∅ do
7 execute(head(π))
8 π← tail(π)

57

BDI architecture [Wooldridge, 2009]

1 while true do
2 B ← brf (B,perception())
3 D← options(B, I)
4 I ← filter(B,D, I)
5 π← plan(B, I ,A)
6 while π 6= ∅ do
7 execute(head(π))
8 π← tail(π)
9 B ← brf (B,perception())

10 if ¬sound(π, I ,B) then
11 π← plan(B, I ,A) ;

revise commitment to plan – re-planning for context adaptation

57

BDI architecture [Wooldridge, 2009]

1 while true do
2 B ← brf (B,perception())
3 D← options(B, I)
4 I ← filter(B,D, I)
5 π← plan(B, I ,A)
6 while π 6= ∅ and ¬succeeded(I ,B) and ¬impossible(I ,B) do
7 execute(head(π))
8 π← tail(π)
9 B ← brf (B,perception())

10 if ¬sound(π, I ,B) then
11 π← plan(B, I ,A) ;

revise commitment to intentions – Single-Minded Commitment

57

BDI architecture [Wooldridge, 2009]

1 while true do
2 B ← brf (B,perception())
3 D← options(B, I)
4 I ← filter(B,D, I)
5 π← plan(B, I ,A)
6 while π 6= ∅ and ¬succeeded(I ,B) and ¬impossible(I ,B) do
7 execute(head(π))
8 π← tail(π)
9 B ← brf (B,perception())

10 if reconsider(I ,B) then
11 D← options(B, I) ;
12 I ← filter(B,D, I) ;

13 if ¬sound(π, I ,B) then
14 π← plan(B, I ,A) ;

reconsider the intentions (not always!)

57

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Jason

Reasoning Cycle

Main Language Constructs: Beliefs, Goals, and Plans
Other Language Features
Comparison With Other Paradigms
The Jason Platform

Tools

Perspectives: Some Past and Future Projects
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

58

Jason
(let’s go programming those nice concepts)

(BDI) Hello World – agent bob

happy(bob). // B

!say(hello). // D

+!say(X) : happy(bob) <- .print(X). // I

60

Desires in Hello World

+happy(bob) <- !say(hello).

+!say(X) : not today(monday) <- .print(X).

61

Hello World
source of beliefs

+happy(bob)[source(A)]
: someone_who_knows_me_very_well(A)
<- !say(hello).

+!say(X) : not today(monday) <- .print(X).

62

Hello World
plan selection

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X).

63

Hello World
intention revision

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X); !say(X).

-happy(H)
: .my_name(H)
<- .drop_intention(say(hello)).

64

Hello World
intention revision

+happy(H)[source(A)]
: sincere(A) & .my_name(H)
<- !say(hello).

+happy(H)
: not .my_name(H)
<- !say(i_envy(H)).

+!say(X) : not today(monday) <- .print(X); !say(X).

-happy(H)
: .my_name(H)
<- .drop_intention(say(hello)).

64

AgentSpeak
The foundational language for Jason

I Originally proposed by Rao [Rao, 1996]
I Programming language for BDI agents
I Elegant notation, based on logic programming
I Inspired by PRS (Georgeff & Lansky), dMARS (Kinny), and BDI

Logics (Rao & Georgeff)
I Abstract programming language aimed at theoretical results

65

Jason
A practical implementation of a variant of AgentSpeak

I Jason implements the operational semantics of a variant of
AgentSpeak

I Has various extensions aimed at a more practical programming
language (e.g. definition of the MAS, communication, ...)

I Highly customised to simplify extension and experimentation
I Developed by Jomi F. Hübner, Rafael H. Bordini, and others

66

Main Language Constructs

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how

Events: happen as consequence to changes in the agent’s beliefs
or goals

Intentions: plans instantiated to achieve some goal

67

Main Language Constructs and Runtime Structures

Beliefs: represent the information available to an agent (e.g.
about the environment or other agents)

Goals: represent states of affairs the agent wants to bring about

Plans: are recipes for action, representing the agent’s know-how

Events: happen as consequence to changes in the agent’s beliefs
or goals

Intentions: plans instantiated to achieve some goal

67

Basic Reasoning cycle
runtime interpreter

I perceive the environment and update belief base
I process new messages
I select event
I select relevant plans
I select applicable plans
I create/update intention
I select intention to execute
I execute one step of the selected intention

68

Jason Reasoning Cycle

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

69

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Jason

Reasoning Cycle

Main Language Constructs: Beliefs, Goals, and Plans
Other Language Features
Comparison With Other Paradigms
The Jason Platform

Tools

Perspectives: Some Past and Future Projects
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

70

Beliefs — Representation

Syntax

Beliefs are represented by annotated literals of first order logic

functor(term1, ..., termn)[annot1, ..., annotm]

Example (belief base of agent Tom)

red(box1)[source(percept)].
friend(bob,alice)[source(bob)].
lier(alice)[source(self),source(bob)].
~lier(bob)[source(self)].

71

Beliefs — Dynamics I
by perception

beliefs annotated with source(percept) are automatically updated
accordingly to the perception of the agent

by intention

the plan operators + and - can be used to add and remove beliefs
annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice)[source(self)]

-lier(john); // removes lier(john)[source(self)]

72

Beliefs — Dynamics II

by communication

when an agent receives a tell message, the content is a new belief
annotated with the sender of the message

.send(tom,tell,lier(alice)); // sent by bob

// adds lier(alice)[source(bob)] in Tom’s BB

...

.send(tom,untell,lier(alice)); // sent by bob

// removes lier(alice)[source(bob)] from Tom’s BB

73

Goals — Representation

Types of goals

I Achievement goal: goal to do
I Test goal: goal to know

Syntax

Goals have the same syntax as beliefs, but are prefixed by
! (achievement goal) or
? (test goal)

Example (Initial goal of agent Tom)

!write(book).

74

Goals — Dynamics I
by intention

the plan operators ! and ? can be used to add a new goal annotated
with source(self)

...
// adds new achievement goal !write(book)[source(self)]

!write(book);

// adds new test goal ?publisher(P)[source(self)]

?publisher(P);
...

75

Goals — Dynamics II
by communication – achievement goal

when an agent receives an achieve message, the content is a new
achievement goal annotated with the sender of the message

.send(tom,achieve,write(book)); // sent by Bob

// adds new goal write(book)[source(bob)] for Tom

...

.send(tom,unachieve,write(book)); // sent by Bob

// removes goal write(book)[source(bob)] for Tom

76

Goals — Dynamics III

by communication – test goal

when an agent receives an askOne or askAll message, the content is a
new test goal annotated with the sender of the message

.send(tom,askOne,published(P),Answer); // sent by Bob

// adds new goal ?publisher(P)[source(bob)] for Tom

// the response of Tom will unify with Answer

77

Triggering Events — Representation

I Events happen as consequence to changes in the agent’s beliefs or
goals

I An agent reacts to events by executing plans
I Types of plan triggering events

+b (belief addition)
-b (belief deletion)

+!g (achievement-goal addition)
-!g (achievement-goal deletion)
+?g (test-goal addition)
-?g (test-goal deletion)

78

Plans — Representation

An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:
I the triggering event denotes the events that the plan is meant to

handle
I the context represent the circumstances in which the plan can be

used
I the body is the course of action to be used to handle the event if

the context is believed true at the time a plan is being chosen to
handle the event

79

Plans — Operators for Plan Context

Boolean operators

& (and)

| (or)
not (not)

= (unification)

>, >= (relational)

<, <= (relational)

== (equals)

\== (different)

Arithmetic operators

+ (sum)

- (subtraction)

* (multiply)

/ (divide)

div (divide – integer)

mod (remainder)

** (power)

80

Plans — Operators for Plan Body

+rain : time_to_leave(T) & clock.now(H) & H >= T
<- !g1; // new sub-goal

!!g2; // new goal

?b(X); // new test goal

+b1(T-H); // add mental note

-b2(T-H); // remove mental note

-+b3(T*H); // update mental note

jia.get(X); // internal action

X > 10; // constraint to carry on

close(door);// external action

!g3[hard_deadline(3000)]. // goal with deadline

81

Plans — Example

+green_patch(Rock)[source(percept)]
: not battery_charge(low)
<- ?location(Rock,Coordinates);

!at(Coordinates);
!examine(Rock).

+!at(Coords)
: not at(Coords) & safe_path(Coords)
<- move_towards(Coords);

!at(Coords).
+!at(Coords)

: not at(Coords) & not safe_path(Coords)
<- ...

+!at(Coords) : at(Coords).

82

Plans — Dynamics

The plans that form the plan library of the agent come from
I initial plans defined by the programmer
I plans added dynamically and intentionally by

I .add_plan
I .remove_plan

I plans received from
I tellHow messages
I untellHow

83

A note about “Control”

Agents can control (manipulate) their own (and influence the others)
I beliefs
I goals
I plan

By doing so they control their behaviour

The developer provides initial values of these elements and thus also
influence the behaviour of the agent

84

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Jason

Reasoning Cycle

Main Language Constructs: Beliefs, Goals, and Plans
Other Language Features
Comparison With Other Paradigms
The Jason Platform

Tools

Perspectives: Some Past and Future Projects
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

85

Other Language Features
Strong Negation

+!leave(home)
: ~raining
<- open(curtains); ...

+!leave(home)
: not raining & not ~raining
<- .send(mum,askOne,raining,Answer,3000); ...

86

Prolog-like Rules in the Belief Base

tall(X) :-
woman(X) & height(X, H) & H > 1.70
|
man(X) & height(X, H) & H > 1.80.

likely_color(Obj,C) :-
colour(Obj,C)[degOfCert(D1)] &
not (colour(Obj,_)[degOfCert(D2)] & D2 > D1) &
not ~colour(C,B).

87

Plan Annotations
I Like beliefs, plans can also have annotations, which go in the plan

label
I Annotations contain meta-level information for the plan, which

selection functions can take into consideration
I The annotations in an intended plan instance can be changed

dynamically (e.g. to change intention priorities)
I There are some pre-defined plan annotations, e.g. to force a

breakpoint at that plan or to make the whole plan execute
atomically

Example (an annotated plan)

@myPlan[chance_of_success(0.3), usual_payoff(0.9),
any_other_property]

+!g(X) : c(t) <- a(X).

88

Failure Handling: Contingency Plans

Example (an agent blindly committed to g)

+!g : g.

+!g : ... <- ... ?g.

-!g : true <- !g.

89

Meta Programming

Example (an agent that asks for plans on demand)

-!G[error(no_relevant)] : teacher(T)
<- .send(T, askHow, { +!G }, Plans);

.add_plan(Plans);
!G.

in the event of a failure to achieve any goal G due to no
relevant plan, asks a teacher for plans to achieve G and then
try G again

I The failure event is annotated with the error type, line, source, ...
error(no_relevant) means no plan in the agent’s plan library to
achieve G

I { +!G } is the syntax to enclose triggers/plans as terms

90

Internal Actions

I Unlike actions, internal actions do not change the environment
I Code to be executed as part of the agent reasoning cycle
I AgentSpeak is meant as a high-level language for the agent’s

practical reasoning and internal actions can be used for invoking
legacy code elegantly

I Internal actions can be defined by the user in Java

libname.action_name(. . .)

91

Standard Internal Actions

I Standard (pre-defined) internal actions have an empty library name
I .print(term1,term2, . . .)
I .union(list1, list2, list3)
I .my_name(var)
I .send(ag,perf ,literal)
I .intend(literal)
I .drop_intention(literal)

I Many others available for: printing, sorting, list/string operations,
manipulating the beliefs/annotations/plan library, creating agents,
waiting/generating events, etc.

92

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Jason

Reasoning Cycle

Main Language Constructs: Beliefs, Goals, and Plans
Other Language Features
Comparison With Other Paradigms
The Jason Platform

Tools

Perspectives: Some Past and Future Projects
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

93

Jason × Java

Consider a very simple robot with two goals:
I when a piece of gold is seen, go to it
I when battery is low, go charge it

94

Java code – go to gold

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));

}
while (seeGold) {

a = selectDirection();

doAction(go(a));

} } } }

95

Java code – charge battery

public class Robot extends Thread {
boolean seeGold, lowBattery;
public void run() {

while (true) {
while (! seeGold) {

a = randomDirection();
doAction(go(a));
if (lowBattery) charge();

}
while (seeGold) {

a = selectDirection ();
if (lowBattery) charge();
doAction(go(a));
if (lowBattery) charge();

} } } }

96

Jason code

direction(gold) :- see(gold).
direction(random) :- not see(gold).

+!find(gold) // long term goal
<- ?direction(A);

go(A);
!find(gold).

+battery(low) // reactivity
<- !charge.

ˆ!charge[state(started)] // goal meta-events
<- .suspend(find(gold)).

ˆ!charge[state(finished)]
<- .resume(find(gold)).

97

Jason × Prolog

I With the Jason extensions, nice separation of theoretical and
practical reasoning

I BDI architecture allows
I long-term goals (goal-based behaviour)
I reacting to changes in a dynamic environment
I handling multiple foci of attention (concurrency)

I Acting on an environment and a higher-level conception of a
distributed system

98

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Jason

Reasoning Cycle

Main Language Constructs: Beliefs, Goals, and Plans
Other Language Features
Comparison With Other Paradigms
The Jason Platform

Tools

Perspectives: Some Past and Future Projects
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

99

Communication Infrastructure

Various communication and execution management infrastructures can
be used with Jason:

Centralised: all agents in the same machine,
one thread by agent, very fast

Centralised (pool): all agents in the same machine,
fixed number of thread,
allows thousands of agents

Jade: distributed agents, FIPA-ACL

... others defined by the user (e.g. AgentScape)

100

Jason Customisations

I Agent class customisation:
selectMessage, selectEvent, selectOption, selectIntetion, buf, brf,
...

I Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

I Belief base customisation:
add, remove, contains, ...

I Example available with Jason: persistent belief base (in text files, in
data bases, ...)

101

Tools

I Eclipse Plugin
I Mind Inspector
I Integration with

I CArtAgO
I Moise
I MADEM
I Ontologies
I ...

I More on http://jason.sourceforge.net/wp/projects/

102

http://jason.sourceforge.net/wp/projects/

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Jason

Reasoning Cycle

Main Language Constructs: Beliefs, Goals, and Plans
Other Language Features
Comparison With Other Paradigms
The Jason Platform

Tools

Perspectives: Some Past and Future Projects
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

103

Some Shortfalls

I IDEs and programming tools are still not anywhere near the level of
OO languages

I Debugging is a serious issue — much more than “mind tracing” is
needed

I Combination with organisational models is very recent — much
work still needed

I Principles for using declarative goals in practical programming
problems still not “textbook”

I Large applications and real-world experience much needed!

104

Some Trends

I Modularity and encapsulation
I Debugging MAS is hard: problems of concurrency, simulated

environments, emergent behaviour, mental attitudes
I Logics for Agent Programming languages
I Further work on combining with interaction, environments, and

organisations
I We need to put everything together: rational agents,

environments, organisations, normative systems, reputation
systems, economically inspired techniques, etc.

; Multi-Agent Programming

105

Some Related Projects I

I Speech-act based communication
Joint work with Renata Vieira, Álvaro Moreira, and Mike
Wooldridge

I Cooperative plan exchange
Joint work with Viviana Mascardi, Davide Ancona

I Plan Patterns for Declarative Goals
Joint work with M.Wooldridge

I Planning (Felipe Meneguzzi and Colleagues)
I Web and Mobile Applications (Alessandro Ricci and Colleagues)
I Belief Revision

Joint work with Natasha Alechina, Brian Logan, Mark Jago

106

Some Related Projects II

I Ontological Reasoning
I Joint work with Renata Vieira, Álvaro Moreira
I JASDL: joint work with Tom Klapiscak

I Goal-Plan Tree Problem (Thangarajah et al.)
Joint work with Tricia Shaw

I Trust reasoning (ForTrust project)
I Agent verification and model checking

Joint project with M.Fisher, M.Wooldridge, W.Visser, L.Dennis,
B.Farwer

107

Some Related Projects III

I Environments, Organisation and Norms
I Normative environments
Join work with A.C.Rocha Costa and F.Okuyama

I MADeM integration (Francisco Grimaldo Moreno)
I Normative integration (Felipe Meneguzzi)

I More on jason.sourceforge.net, related projects

108

jason.sourceforge.net

Summary

I AgentSpeak
I Logic + BDI
I Agent programming language

I Jason
I AgentSpeak interpreter
I Implements the operational semantics of AgentSpeak
I Speech-act based communicaiton
I Highly customisable
I Useful tools
I Open source
I Open issues

109

Acknowledgements

I Many thanks to the
I Various colleagues acknowledged/referenced throughout these slides
I Jason users for helpful feedback
I CNPq for supporting some of our current researh

110

Further Resources

I http://jason.sourceforge.net

I R.H. Bordini, J.F. Hübner, and
M. Wooldrige
Programming Multi-Agent Systems in
AgentSpeak using Jason
John Wiley & Sons, 2007.

111

http://jason.sourceforge.net

Environment Oriented
Programming
— EOP —

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming
Why Environment Programming in MAS
Basic Level
Advanced Level
A&A and CArtAgO
Conclusions and Wrap-up

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

113

Back to the Notion of Environment in MAS

I The notion of environment is intrinsically related to the notion of
agent and multi-agent system

I “An agent is a computer system that is situated in some
environment and that is capable of autonomous action in this
environment in order to meet its design
objective” [Wooldridge, 2002]

I “An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon the environment
through effectors. ” [Russell and Norvig, 2003]

I Including both physical and software environments

114

Single Agent Perspective

ENVIRONMENT

feedback

actions

percepts
effectors / actuators

sensors

acti
on to

 d
o

PERCEPTION

DECISION

ACTION

I Perception
I process inside agent inside of attaining awareness or understanding
sensory information, creating percepts perceived form of external
stimuli or their absence

I Actions
I the means to affect, change or inspect the environment

115

Multi-Agent Perspective

I In evidence
I overlapping spheres of visibility and influence
I ..which means: interaction

116

Why Environment Programming

I Basic level
I to create testbeds for real/external environments
I to ease the interface/interaction with existing software
environments

I Advanced level
I to uniformly encapsulate and modularise functionalities of the MAS
out of the agents

I typically related to interaction, coordination, organisation, security
I externalisation

I this implies changing the perspective on the environment
I environment as a first-class abstraction of the MAS
I endogenous environments (vs. exogenous ones)
I programmable environments

117

Environment Programming: General Issues

I Defining the interface
I actions, perceptions
I data-model

I Defining the environment computational model & architecture
I how the environment works
I structure, behaviour, topology
I core aspects to face: concurrency, distribution

I Defining the environment programming model
I how to program the environment

118

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming
Why Environment Programming in MAS
Basic Level
Advanced Level
A&A and CArtAgO
Conclusions and Wrap-up

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

119

Basic Level Overview

actions

percepts

SIMULATED

WORLD

OR

INTERFACE

OR

WRAPPER TO

EXISTING

TECHNOLOGY

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

MAS ENVIRONMENT

REAL WORLD
(PHYSICAL OR

COMPUTATIONAL)

mimicking

Example:

JAVA

PLATFORMAGENTS

MAS

120

Basic Level: Features

I Environment conceptually conceived as a single monolitic block
I providing actions, generating percepts

I Environment API
I to define the set of actions and program actions computational
behaviour

I which include the generation of percepts
I typically implemented using as single object/class in OO such as
Java

I method to execute actions
I fields to store the environment state

I available in many agent programming languages/frameworks
I e.g., Jason, 2APL, GOAL, JADEX

121

An Example: Jason [Bordini et al., 2007a]

I Flexible Java-based Environment API
I Environment base class to be specialised

I executeAction method to specify action semantics
I addPercept to generate percepts

User
Environment

Agent
Architecture

getPercepts

change
percepts

executeAction

+init(String[] args)
+stop()

+getPercepts(String agName): List<Literal>
+executeAction(String agName, Structure action): boolean

+addPercept(String agName, Literal p)
+removePercept(String agName, Literal p)
...

-globalPercepts: List<Literal>
-agPercepts: Map<String,List<Literal>>

Environment

+init(String[] args)
+executeAction(String agName, Structure action): boolean

UserEnvironment

122

MARS Environment in Jason

public class MarsEnv extends Environment {
 private MarsModel model;
 private MarsView view;

 public void init(String[] args) {
 model = new MarsModel();
 view = new MarsView(model);
 model.setView(view);
 updatePercepts();
 }

 public boolean executeAction(String ag, Structure action) {
 String func = action.getFunctor();
 if (func.equals("next")) {
 model.nextSlot();
 } else if (func.equals("move_towards")) {
 int x = (int)((NumberTerm)action.getTerm(0)).solve();
 int y = (int)((NumberTerm)action.getTerm(1)).solve();
 model.moveTowards(x,y);
 } else if (func.equals("pick")) {
 model.pickGarb();
 } else if (func.equals("drop")) {
 model.dropGarb();
 } else if (func.equals("burn")) {
 model.burnGarb();
 } else {
 return false;
 }

 updatePercepts();
 return true;
 }
 ...

 ...

 /* creates the agents perception
 * based on the MarsModel */
 void updatePercepts() {

 clearPercepts();

 Location r1Loc = model.getAgPos(0);
 Location r2Loc = model.getAgPos(1);

 Literal pos1 = Literal.parseLiteral
 ("pos(r1," + r1Loc.x + "," + r1Loc.y + ")");
 Literal pos2 = Literal.parseLiteral
 ("pos(r2," + r2Loc.x + "," + r2Loc.y + ")");

 addPercept(pos1);
 addPercept(pos2);

 if (model.hasGarbage(r1Loc)) {
 addPercept(Literal.parseLiteral("garbage(r1)"));
 }

 if (model.hasGarbage(r2Loc)) {
 addPercept(Literal.parseLiteral("garbage(r2)"));
 }
 }

 class MarsModel extends GridWorldModel { ... }

 class MarsView extends GridWorldView { ... }
}

123

Jason Agents Playing on Mars

// mars robot 1

/* Initial beliefs */

at(P) :- pos(P,X,Y) & pos(r1,X,Y).

/* Initial goal */

!check(slots).

/* Plans */

+!check(slots) : not garbage(r1)
 <- next(slot);
 !!check(slots).
+!check(slots).

+garbage(r1) : not .desire(carry_to(r2))
 <- !carry_to(r2).

+!carry_to(R)
 <- // remember where to go back
 ?pos(r1,X,Y);
 -+pos(last,X,Y);

 // carry garbage to r2
 !take(garb,R);

 // goes back and continue to check
 !at(last);
 !!check(slots).
...

...

+!take(S,L) : true
 <- !ensure_pick(S);
 !at(L);
 drop(S).

+!ensure_pick(S) : garbage(r1)
 <- pick(garb);
 !ensure_pick(S).
+!ensure_pick(_).

+!at(L) : at(L).
+!at(L) <- ?pos(L,X,Y);
 move_towards(X,Y);
 !at(L).

124

Another Example: 2APL [Dastani, 2008b]

I 2APL
I BDI-based agent-oriented programming language integrating
declarative programming constructs (beliefs, goals) and imperative
style programming constructs (events, plans)

I Java-based Environment API
I Environment base class
I implementing actions as methods

I inside action methods external events can be generated to be
perceived by agents as percepts

125

Example: Block-world Environment in 2APL

package blockworld;

public class Env extends apapl.Environment {

public void enter(String agent, Term x, Term y, Term c){...}

public Term sensePosition(String agent){...}

public Term pickup(String agent){...}

public void north(String agent){...}

 ...

}

126

2APL Agents in the block-world

BeliefUpdates:
 { bomb(X,Y) } RemoveBomb(X,Y){ not bomb(X,Y) }
 { true } AddBomb(X,Y) { bomb(X,Y) }
 { carry(bomb) } Drop() { not carry(bomb)}
 { not carry(bomb) } PickUp() { carry(bomb) }

Beliefs:
 start(0,1).
 bomb(3,3).
 clean(blockWorld) :-
 not bomb(X,Y) , not carry(bomb).

Plans:
 B(start(X,Y)) ;
 @blockworld(enter(X, Y, blue), L)

Goals:
 clean(blockWorld)

PG-rules:
 clean(blockWorld) <- bomb(X, Y) |
 {
 goto(X, Y);
 @blockworld(pickup(), L1);
 PickUp();
 RemoveBomb(X, Y);
 goto(0, 0);
 @blockworld(drop(), L2);
 Drop()
 }
...

...

PC-rules:
 goto(X, Y) <- true |
 {
 @blockworld(sensePosition(), POS);
 B(POS = [A,B]);
 if B(A > X) then
 { @blockworld(west(), L);
 goto(X, Y)
 }
 else if B(A < X) then
 { @blockworld(east(), L);
 goto(X, Y)
 }
 else if B(B > Y) then
 { @blockworld(north(), L);
 goto(X, Y)
 }
 else if B(B < Y) then
 { @blockworld(south(), L);
 goto(X, Y)
 }
 }

 ...

127

Environment Interface Stardard – EIS Initiative

I Recent initiative supported by main APL research
groups [Behrens et al., 2010]

I GOAL, 2APL, GOAL, JADEX, JASON
I Goal of the initiative

I design and develop a generic environment interface standard
I a standard to connect agents to environments
I ... environments such as agent testbeds, commercial applications,

video games..

I Principles
I wrapping already existing environments
I creating new environments by connecting already existing apps
I creating new environments from scratch

I Requirements
I generic
I reuse

128

EIS Meta-Model

I By means of the Env. Interface agents perform actions and collect
percepts

I actually actions/percepts are issued to controllable entities in
environment model

I represent the agent bodies, with effectors and sensors

129

Environment Interface Features

I Interface functions
I attaching, detaching, and notifying observers (software design
pattern);

I registering and unregistering agents;
I adding and removing entities;
I managing the agents-entities-relation;
I performing actions and retrieving percepts;
I managing the environment

I Interface Intermediate language
I to facilitate data-exchange
I encoding percepts, actions, events

130

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming
Why Environment Programming in MAS
Basic Level
Advanced Level
A&A and CArtAgO
Conclusions and Wrap-up

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

131

Advanced Level Overview

I Vision: environment as a first-class abstraction in
MAS [Weyns et al., 2007, Ricci et al., 2011]

I application or endogenous environments, i.e. that environment
which is an explicit part of the MAS

I providing an exploitable design & programming abstraction to build
MAS applications

I Outcome
I distinguishing clearly between the responsibilities of agent and
environment

I separation of concerns
I improving the engineering practice

132

Three Support Levels [Weyns et al., 2007]

I Basic interface support
I Abstraction support level
I Interaction-mediation support level

133

Basic Interface Support

I The environment enables agents to access the deployment context
I i.e. the hardware and software and external resources with which
the MAS interacts

134

Abstraction Support

I Bridges the conceptual gap between the agent abstraction and
low-level details of the deployment context

I shields low-level details of the deployment context

135

Interaction-Mediation Support

I Regulate the access to shared resources
I Mediate interaction between agents

136

Environment Definition Revised

Environment definition revised [Weyns et al., 2007]
The environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both the
interaction among agents and the access to resources

137

Research on Environments for MAS

I Environments for Multi-Agent Systems research field / E4MAS
workshop series [Weyns et al., 2005]

I different themes and issues (see JAAMAS Special
Issue [Weyns and Parunak, 2007] for a good survey)

I mechanisms, architectures, infrastructures,
applications [Platon et al., 2007, Weyns and Holvoet, 2007,
Weyns and Holvoet, 2004, Viroli et al., 2007]

I the main perspective is (agent-oriented) software engineering
I Focus of this tutorial: the role of the environment abstraction in

MAS programming
I environment programming

138

Environment Programming

I Environment as first-class programming
abstraction [Ricci et al., 2011]

I software designers and engineers perspective
I endogenous environments (vs. exogenous one)
I programming MAS =
programming Agents + programming Environment

I ..but this will be extended to include OOP in next part

I Environment as first-class runtime abstraction for agents
I agent perspective
I to be observed, used, adapted, constructed, ...

I Defining computational and programming frameworks/models also
for the environment part

139

Computational Frameworks for Environment
Programming: Issues

I Defining the environment interface
I actions, percepts, data model
I contract concept, as defined in software engineering contexts
(Design by Contract)

I Defining the environment computational model
I environment structure, behaviour

I Defining the environment distribution model
I topology

140

Programming Models for the Environment: Desiderata

I Abstraction
I keeping the agent abstraction level e.g. no agents sharing and
calling OO objects

I effective programming models for controllable and observable
computational entities

I Modularity
I away from the monolithic and centralised view

I Orthogonality
I wrt agent models, architectures, platforms
I support for heterogeneous systems

141

Programming Models for the Environment: Desiderata

I Dynamic extensibility
I dynamic construction, replacement, extension of environment parts
I support for open systems

I Reusability
I reuse of environment parts for different kinds of applications

142

Existing Computational Frameworks

I AGRE / AGREEN / MASQ [Stratulat et al., 2009]
I AGRE – integrating the AGR (Agent-Group-Role) organisation
model with a notion of environment

I Environment used to represent both the physical and social part of
interaction

I AGREEN / MASQ – extending AGRE towards a unified
representation for physical, social and institutional environments

I Based on MadKit platform [Gutknecht and Ferber, 2000a]
I GOLEM [Bromuri and Stathis, 2008]

I Logic-based framework to represent environments for situated
cognitive agents

I composite structure containing the interaction between cognitive
agents and objects

I A&A and CArtAgO [Ricci et al., 2011]
I introducing a computational notion of artifact to design and
implement agent environments

143

A&A and CArtAgO
(let’s go programming those nice concepts)

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming
Why Environment Programming in MAS
Basic Level
Advanced Level
A&A and CArtAgO
Conclusions and Wrap-up

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

145

Agents and Artifacts (A&A) Conceptual Model:
Background Human Metaphor

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

146

A&A Basic Concepts [Omicini et al., 2008]

I Agents
I autonomous, goal-oriented pro-active entities
I create and co-use artifacts for supporting their activities

I besides direct communication

I Artifacts
I non-autonomous, function-oriented, stateful entities

I controllable and observable
I modelling the tools and resources used by agents

I designed by MAS programmers

I Workspaces
I grouping agents & artifacts
I defining the topology of the computational environment

147

A&A Programming Model Features [Ricci et al., 2007b]

I Abstraction
I artifacts as first-class resources and tools for agents

I Modularisation
I artifacts as modules encapsulating functionalities, organized in
workspaces

I Extensibility and openness
I artifacts can be created and destroyed at runtime by agents

I Reusability
I artifacts (types) as reusable entities, for setting up different kinds of
environments

148

A&A Meta-Model in More Detail [Ricci et al., 2011]

Artifact

Operation

Observable
Event

generate

Agentuse

perceive

Workspace

Environment

Observable
Property

update

perceive

observe

Manual

has

consult

link

create

dispose

link

join

quit

149

Artifact Abstract Representation

OperationX(Params)

...

ObsPropName(Args)

...

SIGNALS

USAGE

INTERFACE

OBSERVABLE

PROPERTIES

OperationY(Params)

...

LINK

INTERFACE

OPERATIONS

150

A World of Artifacts

put

n_items 0

max_items 100

get

a bounded buffer

inc

count 5

reset

a counter

switch

state true

a flag

setTodo

last_todo ...

cancelTodo

next_todo check_plant

an agenda

...

GetLastTradePrice

a Stock Quote Web Service

availablestate

...wsdl

postEvent

registerForEvs

clearEvents

an event service

query

createTable

addRecord

a data-base

...

1001n_records

table_names ...

... ...

in

rd

out

a tuple space

151

A Simple Taxonomy

I Individual or personal artifacts
I designed to provide functionalities for a single agent use

I e.g. an agenda for managing deadlines, a library...

I Social artifacts
I designed to provide functionalities for structuring and managing the
interaction in a MAS

I coordination artifacts [Omicini et al., 2004], organisation artifacts,
...

I e.g. a blackboard, a game-board,...

I Boundary artifacts
I to represent external resources/services

I e.g. a printer, a Web Service
I to represent devices enabling I/O with users

I e.g GUI, console, etc.

152

Actions and Percepts in Artifact-Based Environments

I Explicit semantics defined by the (endogenous)
environment [Ricci et al., 2010b]

I success/failure semantics, execution semantics
I defining the contract (in the SE acceptation) provided by the
environment

actions ←→ artifacts’ operation

the action repertoire is given by the dynamic set of operations provided
by the overall set of artifacts available in the workspace can be changed
by creating/disposing artifacts
I action success/failure semantics is defined by operation semantics

percepts ←→ artifacts’ observable properties + signals

properties represent percepts about the state of the environment signals
represent percepts concerning events signalled by the environment

153

Interaction Model: Use

op(Params)

ValuePropName

ValuePropName
...

...

AGENT

op(parms)
action

I Performing an action corresponds to triggering the execution of an
operation

I acting on artifact’s usage interface

154

Interaction Model: Operation execution

OPERATION EXECUTION
op(Params)

ValuePropName
Value
...

...

SIGNALS OBS PROPERTIES
CHANGE

AGENT

op(parms)
action

action completion
- with success or failure -

I a process structured in one or multiple transactional steps
I asynchronous with respect to agent

I ...which can proceed possibly reacting to percepts and executing
actions of other plans/activities

I operation completion causes action completion
I action completion events with success or failure, possibly with
action feedbacks

155

Interaction Model: Observation

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

focus

AGENT
OBSERVER

I Agents can dynamically select which artifacts to observe
I predefined focus/stopFocus actions

156

Interaction Model: Observation

AGENT
OBSERVER

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

use

I By focussing an artifact
I observable properties are mapped into agent dynamic knowledge
about the state of the world, as percepts

I e.g. belief base
I signals are mapped as percepts related to observable events

157

Artifact Linkability

WSP-X WSP-Y

linkedOp

I Basic mechanism to enable inter-artifact interaction
I linking artifacts through interfaces (link interfaces)

I operations triggered by an artifact over an other artifact
I Useful to design & program distributed environments

I realised by set of artifacts linked together
I possibly hosted in different workspaces

158

Artifact Manual

I Agent-readable description of artifact’s...
I ...functionality

I what functions/services artifacts of that type provide
I ...operating instructions

I how to use artifacts of that type

I Towards advanced use of artifacts by intelligent
agents [Piunti et al., 2008]

I dynamically choosing which artifacts to use to accomplish their
tasks and how to use them

I strong link with Semantic Web research issues
I Work in progress

I defining ontologies and languages for describing the manuals

159

CArtAgO

I Common ARtifact infrastructure for AGent Open environment
(CArtAgO) [Ricci et al., 2009c]

I Computational framework / infrastructure to implement and run
artifact-based environment [Ricci et al., 2007c]

I Java-based programming model for defining artifacts
I set of basic API for agent platforms to work within artifact-based
environment

I Distributed and open MAS
I workspaces distributed on Internet nodes

I agents can join and work in multiple workspace at a time
I Role-Based Access Control (RBAC) security model

I Open-source technology
I available at http://cartago.sourceforge.net

160

http://cartago.sourceforge.net

Integration with Agent Languages and Platforms

I Integration with existing agent platforms [Ricci et al., 2008]
I by means of bridges creating an action/perception interface and
doing data binding

I Outcome
I developing open and heterogenous MAS
I introducing a further perspective on interoperability besides the
ACL’s one

I sharing and working in a common work environment
I common object-oriented data-model

161

JaCa Platform

I Integration of CArtAgO with Jason language/platform
I a JaCa program is a dynamic set of Jason agents working together
in one or multiple CArtAgO workspaces

I Mapping
I actions

I Jason agent external actions are mapped onto artifacts’ operations
I percepts

I artifacts’ observable properties are mapped onto agent beliefs
I artifacts’ signals are mapped as percepts related to observable events

I data-model
I Jason data-model is extended to manage also (Java) objects

162

Example 1: A Simple Counter Artifact

class Counter extends Artifact {

 void init(){
 defineObsProp("count",0);
 }

 @OPERATION void inc(){
 ObsProperty p = getObsProperty("count");
 p.updateValue(p.intValue() + 1);
 signal("tick");
 }
}

inc

count 5

I Some API spots
I Artifact base class
I @OPERATION annotation to mark artifact?s operations
I set of primitives to work define/update/.. observable properties
I signal primitive to generate signals

163

Example 1: User and Observer Agents

!create_and_use.

+!create_and_use : true
 <- !setupTool(Id);
 // use
 inc;
 // second use specifying the Id
 inc [artifact_id(Id)].

// create the tool
+!setupTool(C): true
 <- makeArtifact("c0","Counter",C).

!observe.

+!observe : true
 <- ?myTool(C); // discover the tool
 focus(C).

+count(V)
 <- println(“observed new value: “,V).

+tick [artifact_name(Id,”c0”)]
 <- println(“perceived a tick”).

+?myTool(CounterId): true
 <- lookupArtifact(“c0”,CounterId).

-?myTool(CounterId): true
 <- .wait(10);
 ?myTool(CounterId).

OBSERVER(S)USER(S)

I Working with the shared counter

164

Pre-defined Artifacts

I Each workspace contains by default a predefined set of artifacts
I providing core and auxiliary functionalities
I i.e. a pre-defined repertoire of actions available to agents...

I Among the others
I workspace, type: cartago.WorkspaceArtifact

I functionalities to manage the workspace, including security
I operations: makeArtifact, lookupArtifact, focus,...

I node, type: cartago.NodeArtifact
I core functionalities related to a node
I operations: createWorkspace, joinWorkspace, ...

I console, type cartago.tools.Console
I operations: println,...

I blackboard, type cartago.tools.TupleSpace
I operations: out, in, rd, ...

I

165

Example 2: Coordination Artifacts – A Bounded Buffer

public class BoundedBuffer extends Artifact {
 private LinkedList<Item> items;
 private int nmax;

 void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("n_items",0);
 this.nmax = nmax;
 }

 @OPERATION void put(Item obj){
 await("bufferNotFull");
 items.add(obj);

getObsProperty("n_items").updateValue(items.size());
 }

 @OPERATION void get(OpFeedbackParam<Item> res) {
 await("itemAvailable");
 Item item = items.removeFirst();

res.set(item);
getObsProperty("n_items").updateValue(items.size());

 }

 @GUARD boolean itemAvailable(){ return items.size() > 0; }

 @GUARD boolean bufferNotFull(Item obj){ return items.size() < nmax; }
}

put

n_items 5

get

I Basic operation features
I output parameters to represent action feedbacks
I long-term operations, with a high-level support for synchronization
(await primitive, guards)

166

Example 2: Producers and Consumers

item_to_produce(0).
!produce.

+!produce: true
 <- !setupTools(Buffer);
 !produceItems.

+!produceItems : true
 <- ?nextItemToProduce(Item);
 put(Item);
 !!produceItems.

+?nextItemToProduce(N) : true
 <- -item_to_produce(N);
 +item_to_produce(N+1).

+!setupTools(Buffer) : true
 <- makeArtifact("myBuffer","BoundedBuffer",
 [10],Buffer).

-!setupTools(Buffer) : true
 <- lookupArtifact("myBuffer",Buffer).

!consume.

+!consume: true
 <- ?bufferReady;
 !consumeItems.

+!consumeItems: true
 <- get(Item);
 !consumeItem(Item);
 !!consumeItems.

+!consumeItem(Item) : true
 <- .my_name(Me);
 println(Me,": ",Item).

+?bufferReady : true
 <- lookupArtifact("myBuffer",_).
-?bufferReady : true
 <-.wait(50);
 ?bufferReady.

PRODUCERS CONSUMERS

167

Remarks

I Process-based operation execution semantics
I action/operation execution can be long-term
I action/operation execution can overlap
I key feature for implementing coordination functionalities

I Operation with output parameters as action feedbacks

168

Action Execution & Blocking Behaviour

I Given the action/operation map, by executing an action the
intention/activity is suspended until the corresponding operation
has completed or failed

I action completion events generated by the environment and
automatically processed by the agent/environment platform bridge

I no need of explicit observation and reasoning by agents to know if
an action succeeded

I However the agent execution cycle is not blocked!
I the agent can continue to process percepts and possibly execute
actions of other intentions

169

Example 3: Internal Processes – A Clock

public class Clock extends Artifact {

 boolean working;
 final static long TICK_TIME = 100;

 void init(){ working = false; }

 @OPERATION void start(){
 if (!working){
 working = true;
 execInternalOp("work");
 } else {
 failed("already_working");
 }
 }

 @OPERATION void stop(){ working = false; }

 @INTERNAL_OPERATION void work(){
 while (working){
 signal("tick");
 await_time(TICK_TIME);
 }
 }
}

!test_clock.

+!test_clock
 <- makeArtifac("myClock","Clock",[],Id);
 focus(Id);
 +n_ticks(0);
 start;
 println("clock started.").

@plan1
+tick: n_ticks(10)
 <- stop;
 println("clock stopped.").

@plan2 [atomic]
+tick: n_ticks(N)
 <- -+n_ticks(N+1);
 println("tick perceived!").

CLOCK CLOCK USER AGENT

I Internal operations
I execution of operations triggered by other operations
I implementing controllable processes

170

Example 4: Artifacts for User I/O – GUI Artifacts

setValue

value 16.0

user

ok

closed

agent

I Exploiting artifacts to enable interaction between human users and
agents

171

Example 4: Agent and User Interaction

public class MySimpleGUI extends GUIArtifact {
 private MyFrame frame;

 public void setup() {
 frame = new MyFrame();

 linkActionEventToOp(frame.okButton,"ok");
 linkKeyStrokeToOp(frame.text,"ENTER","updateText");
 linkWindowClosingEventToOp(frame, "closed");
 defineObsProperty("value",getValue());
 frame.setVisible(true);
 }

 @INTERNAL_OPERATION void ok(ActionEvent ev){
 signal("ok");
 }

 @OPERATION void setValue(double value){
 frame.setText(""+value);
 updateObsProperty("value",value);
 }
 ...

 @INTERNAL_OPERATION
 void updateText(ActionEvent ev){
 updateObsProperty("value",getValue());
 }

 private int getValue(){
 return Integer.parseInt(frame.getText());
 }

 class MyFrame extends JFrame {...}
}

!test_gui.

+!test_gui
 <- makeArtifact("gui","MySimpleGUI",Id);
 focus(Id).

+value(V)
 <- println("Value updated: ",V).

+ok : value(V)
 <- setValue(V+1).

+closed
 <- .my_name(Me);
 .kill_agent(Me).

GUI ARTIFACT USER ASSISTANT AGENT

172

Other Features

I Other CArtAgO features not discussed in this lecture
I linkability

I executing chains of operations across multiple artifacts
I multiple workspaces

I agents can join and work in multiple workspaces, concurrently
I including remote workspaces

I RBAC security model
I workspace artifact provides operations to set/change the access

control policies of the workspace, depending on the agent role
I ruling agents’ access and use of artifacts of the workspace

I ...

I See CArtAgO papers and manuals for more information

173

A&A and CArtAgO: Some Research Explorations

I Designing and implementing artifact-based organisation
Infrastructures

I JaCaMo model and platform (which is the evolution of the
ORA4MAS infrastructure [Hübner et al., 2009])

I Cognitive stigmergy based on artifact
environments [Ricci et al., 2007a]

I cognitive artifacts for knowledge representation and
coordination [Piunti and Ricci, 2009]

I Artifact-based environments for argumentation [Oliva et al., 2010]
I Including A&A in AOSE methodology [Molesini et al., 2005]
I Defining a Semantic (OWL-based) description of artifact

environments (CArtAgO-DL)
I JaSa project = JASDL + CArtAgO-DL

I ...

174

Applying CArtAgO and JaCa

I Using CArtAgO/JaCa for building real-world applications and
infrastructures

I Some examples
I JaCa-Android

I implementing mobile computing applications on top of the Android
platform using JaCa [Santi et al., 2011]

I http://jaca-android.sourceforge.net
I JaCa-WS / CArtAgO-WS

I building SOA/Web Services applications using
JaCa [Ricci et al., 2010a]

I http://cartagows.sourceforge.net
I JaCa-Web

I implementing Web 2.0 applications using JaCa
I http://jaca-web.sourceforge.net

175

http://jaca-android.sourceforge.net
http://cartagows.sourceforge.net
http://jaca-web.sourceforge.net

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming
Why Environment Programming in MAS
Basic Level
Advanced Level
A&A and CArtAgO
Conclusions and Wrap-up

OOP: Organisation Oriented Programming
Structural specification
Functional specification
Normative specification
Organisational Artifacts

Conclusions

176

Wrap-up

I Environment programming
I environment as a programmable part of the MAS
I encapsulating and modularising functionalities useful for agents’
work

I Artifact-based environments
I artifacts as first-class abstraction to design and program complex
software environments

I usage interface, observable properties / events, linkability
I artifacts as first-order entities for agents

I interaction based on use and observation
I agents dynamically co-constructing, evolving, adapting their world

I CArtAgO computational framework
I programming and executing artifact-based environments
I integration with heterogeneous agent platforms
I JaCa case

177

Organisation Oriented
Programming
— OOP —

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Origins and Fundamentals
Some OOP approaches
Moise Organisation Modeling Language (OML)

Structural specification
Functional specification
Normative specification

Moise Organisation Management Infrastructure (OMI)
Organisational Artifacts

Moise Org. Embodiement Mechanisms for Cartago (E-O)
Moise Org. Awareness Mechanisms in Jason (A-O)
A more coarsed example
Summary

Conclusions

179

Intuitive notions of organisation

I Organisations are structured, patterned systems of activity, knowledge,
culture, memory, history, and capabilities that are distinct from any
single agent [Gasser, 2001]
; Organisations are supra-individual phenomena

I A decision and communication schema which is applied to a set of actors
that together fulfill a set of tasks in order to satisfy goals while
guarantying a global coherent state [Malone, 1999]
; definition by the designer, or by actors, to achieve a purpose

I An organisation is characterized by : a division of tasks, a distribution of
roles, authority systems, communication systems,
contribution-retribution systems [Bernoux, 1985]
; pattern of predefined cooperation

I An arrangement of relationships between components, which results into
an entity, a system, that has unknown skills at the level of the
individuals [Morin, 1977]
; pattern of emergent cooperation

180

Organisation in MAS

Definition
Purposive supra-agent pattern of emergent or (pre)defined agents
cooperation, that could be defined by the designer or by the agents
themselves.

I Pattern of emergent/potential cooperation
I called organisation entity, institution, social relations, commitments

I Pattern of (pre)defined cooperation
I called organisation specification, structure, norms, ...

181

Perspective on organisations from EASSS’05 Tutorial (Sichman, Boissier)

Agents know
about organisation

Agents don’t know
about organisation

Local Representation Organisation Specification
Observed Organisation

Designer / Observer
Bottom-up Top-down Organisation Entity

Agent Centred

Organisation Centred

182

Perspective on organisations from EASSS’05 Tutorial (Sichman, Boissier)

Agents know
about organisation

Agents don’t know
about organisation

Agent Centred
Swarms, AMAS, SASO
Self-organisations …

Organisation is observed.
Implicitly programmed
in Agents, Interactions,
Environment.

Social Reasoning
Coalition formation
Contract Net Protocol …
Organisation is observed.
Coalition formation
mechanisms programmed
in Agents.

AOSE
MASE, GAIA, MESSAGE, …

Organisation is
a design model.
It is hard-coded
in Agents

TAEMS, STEAM, AGR
MOISE+, OPERA, …

Organisation-Oriented
Programming of MAS

Organisation Centred
Local Representation Organisation Specification
Observed Organisation

Designer / Observer
Bottom-up Top-down Organisation Entity

183

Perspective on Org.-Oriented Programming of MAS

I From organisations as an explicit description of the structure of the
agents in the MAS in order to help them

I To organisations as the declarative and explicit definition of the
coordination scheme aiming at “controlling/coordinating” the global
reasoning of the MAS

; Normative Organisations

184

Norms

Norm
Norms are rules that a society has in order to influence the behaviour of
agents.

Norm mechanisms

I Regimentation: norm violation by the agents is prevented
e.g. the access to computers requires an user name
e.g. messages that do not follow the protocol are discarded

I Enforcement: norm violation by the agents is made possible but it
is monitored and subject to incentives
e.g. a master thesis should be written in two years

; Detection of violations, decision about ways of enforcing the
norms (e.g. sanctions)

185

Normative Multi-Agent Organisation

Normative Multi-Agent System [Boella et al., 2008]
A MAS composed of mechanisms to represent, communicate,
distribute, detect, create, modify, and enforce norms, and mechanisms
to deliberate about norms and detect norm violation and fulfilment.

Normative Multi-Agent Organisation

I Norms are expressed in the organisation specification to clearly
define the coordination of the MAS:

I anchored/situated in the organisation
I i.e. norms refer to organisational concepts (roles, groups, etc.)

I Norms are interpreted and considered in the context of the
organisation entity

I Organisation management mechanisms are complemented with
norms management mechanisms (enforcement, regimentation, ...)

186

Challenges: Normative Organisation vs Autonomy

P E 

Environment 

B 

O 

Agents’ desired behavior:

 P ∩ E ∩ O not too big
•  increases performance
•  constrains agents’ autonomy

 P ∩ E ∩ O not too small
•  increases adaptation
•  keeps agents’ autonomy

I B: agents’ possible behaviors
I P: agents’ behaviors that lead to global purpose
I E: agents’ possible behaviors constrained by the environment
I O: agents’ possible/permitted/obliged behaviors constrained by the

normative organisation

187

Organisation Oriented Programming (OOP)

Organisation as a first class entity in the multi-agent eco-system
I Clear distinction between description of the organisation wrt

agents, wrt environment
I Different representations of the organisation:

I Organisation specification
I partially/totally accessible to the agents, to the environment, to the

organisation
I Organisation entity

I Local representation in the mental state of the agents
; possibly inconsistant with the other agents’ representations

I Global/local representation in the MAS
; difficulty to manage and build such a representation in a
distributed and decentralized setting

I Different sources of actions on (resp. of) the organisation by (resp.
on) agents / environment / organisation

188

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent

I Using organisational
concepts

I To define a cooperative
pattern

I Programmed outside of the
agents and outside of the
environment

I Program = Specification
I By changing the

organisation, we can
change the MAS overall
behaviour

189

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent First approach
I Agents read the program

and follow it

189

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent

First approach
I Agents read the program

and follow it

Second approach
I Agents are forced to follow

the program
I Agents are rewarded if they

follow the program
I Agents are sanctioned in

the other case

189

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent

First approach
I Agents read the program

and follow it

Second approach
I Agents are forced to follow

the program
I Agents are rewarded if they

follow the program
I Agents are sanctioned in

the other case

189

Organisation Oriented Programming (OOP)

Organisation
Entity

Organisation
Specification

Agent

Agent

Agent

Components
I Programming Language

(Org. Modeling Lang. –
OML)

I Management Infrastructure
(Org. Mngt Inf. – OMI)

I Integration to Agent
architectures and to
Environment

189

Components of OOP:
Organisation Modelling Language (OML)

I Declarative specification of the organisation(s)
I Specific constraints, norms and cooperation patterns imposed on

the agents
e.g. AGR [Ferber and Gutknecht, 1998],

TeamCore [Tambe, 1997],
Islander [Esteva et al., 2001],
Moise+ [Hübner et al., 2002], ...

I Specific anchors for situating organisations within the environment
e.g. embodied organisations [Piunti et al., 2009a]

190

Components of OOP:
Organisation Management Infrastructure (OMI)

I Coordination mechanisms, i.e. support infrastructure
e.g. MadKit [Gutknecht and Ferber, 2000b],

karma [Pynadath and Tambe, 2003],
...

I Regulation mechanisms, i.e. governance infrastructure
e.g. Ameli [Esteva et al., 2004],

S-Moise+ [Hübner et al., 2006],
ORA4MAS [Hübner et al., 2009],
...

I Adaptation mechanisms, i.e. reorganisation infrastructure

191

Components of OOP:
Integration mechanisms

I Agent integration mechanisms allow agents to be aware of and to
deliberate on:

I entering/exiting the organisation
I modification of the organisation
I obedience/violation of norms
I sanctioning/rewarding other agents

e.g. J -Moise+ [Hübner et al., 2007], Autonomy based
reasoning [Carabelea, 2007], ProsA2 Agent-based reasoning on
norms [Ossowski, 1999], ...

I Environment integration mechanisms
transform organisation into embodied organisation so that:

I organisation may act on the environment (e.g. enact rules,
regimentation)

I environment may act on the organisation (e.g. count-as rules)

e.g [de Brito et al., 2012], [Piunti et al., 2009b],
[Okuyama et al., 2008]

192

Motivations for OOP:
Applications point of view

I Current applications show an increase in
I Number of agents
I Duration and repetitiveness of agent activities
I Heterogeneity of the agents, Number of designers of agents
I Agent ability to act, to decide,
I Action domains of agents, ...
I Openness, scalability, dynamicity, ...

I More and more applications require the integration of human
communities and technological communities (ubiquitous and
pervasive computing), building connected communities (ICities) in
which agents act on behalf of users

I Trust, security, ..., flexibility, adaptation

193

Motivations for OOP:
Constitutive point of view

I Organisation helps the agents to cooperate with the other agents
by defining common cooperation schemes

I global tasks
I protocols
I groups, responsibilities

e.g. ‘to bid’ for a product on eBay is an institutional action only
possible because eBay defines the rules for that very action

I the bid protocol is a constraint but it also creates the action

e.g. when a soccer team plays a match, the organisation helps the
members of the team to synchronise actions, to share information,
etc

194

Motivations for OOP:
Normative point of view

I MAS have two properties which seem contradictory:
I a global purpose
I autonomous agents

; While the autonomy of the agents is essential, it may cause loss in
the global coherence of the system and achievement of the global
purpose

I Embedding norms within the organisation of a MAS is a way to
constrain the agents’ behaviour towards the global purposes of the
organisation, while explicitly addressing the autonomy of the agents
within the organisation
; Normative organisation

e.g. when an agent adopts a role, it adopts a set of behavioural
constraints that support the global purpose of the organisation.
It may decide to obey or disobey these constraints

195

Motivations for OOP:
Agents point of view

An organisational specification is required to enable agents to “reason”
about the organisation:
I to decide to enter into/leave from the organisation during

execution
; Organisation is no more closed

I to change/adapt the current organisation
; Organisation is no more static

I to obey/disobey the organisation
; Organisation is no more a regimentation

196

Motivations for OOP:
Organisation point of view

An organisational specification is required to enable the organisation to
“reason” about itself and about the agents in order to ensure the
achievement of its global purpose:
I to decide to let agents enter into/leave from the organisation

during execution
; Organisation is no more closed

I to decide to let agents change/adapt the current organisation
; Organisation is no more static and blind

I to govern agents behaviour in the organisation (i.e. monitor,
enforce, regiment)
; Organisation is no more a regimentation

197

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Origins and Fundamentals
Some OOP approaches
Moise Organisation Modeling Language (OML)

Structural specification
Functional specification
Normative specification

Moise Organisation Management Infrastructure (OMI)
Organisational Artifacts

Moise Org. Embodiement Mechanisms for Cartago (E-O)
Moise Org. Awareness Mechanisms in Jason (A-O)
A more coarsed example
Summary

Conclusions

198

AGR [Ferber and Gutknecht, 1998]

I Agent Group Role, previously known as AALAADIN
I Agent: Active entity that plays roles within groups. An agent may
have several roles and may belong to several groups.

I Group: set of agents sharing common characteristics, i.e. context
for a set of activities. Two agents can’t communicate with each
other if they don’t belong to the same group.

I Role: Abstract representation of the status, position, function of an
agent within a group.

I OMI: the Madkit platform

199

AGR OML

Interaction
protocol

Group structure Role 1..*
1

contains

source

participant

1

*

1..*

* Role dependency Role properties
*

1

1 1

target

Agent

Group

*

1..*

*

1..*

is member of

plays

1

described by
1 1

initiator 1

Agent
level

Organization
level

200

AGR OML Modelling Dimensions

P
E

Environment

B

B: agents’ possible behaviors
P: agents’ behaviors that lead to global purpose
E: agents’ possible behaviors constrained by the environment
OS: agents’ possible behaviors structurally constrained by the organization

OS

Structural
Specification

201

AGR OMI: Madkit

Multi-Agent Development Kit
www.madkit.org

202

STEAM [Tambe, 1997]

I Shell for TEAMwork is a general framework to enable agents to
participate in teamwork.

I Different applications: Attack, Transport, Robocup soccer
I Based on an enhanced SOAR architecture and 300 domain
independent SOAR rules

I Principles:
I Team synchronization: Establish joint intentions, Monitor team
progress and repair, Individual may fail or succeed in own role

I Reorganise if there is a critical role failure
I Reassign critical roles based on joint intentions
I Decision theoretic communication

I Supported by the TEAMCORE OMI.

203

STEAM OML [Tambe, 1997]

TASK FORCE

ORDERS
OBTAINER

SAFETY INFO
OBTAINER

FLIGHT
TEAM

ROUTE
PLANNER

ESCORT TRANSPORT

HELO1 HELO2 HELO1 HELO2

Organization: hierarchy of roles that
may be filled by agents or groups of
agents.

[TASK FORCE]

[TASK FORCE] [TASK FORCE]
[TASK FORCE]

[ORDERS
OBTAINER]

[TASK FORCE] [ESCORT] [TRANSPORT]

[TASK FORCE]

EVACUATE

PROCESS
ORDERS

EXECUTE
MISSION

LANDING
ZONE
MANEUVERS

OBTAIN
ORDERS

FLY-FLIGHT
PLAN

MASK
OBSERVE PICKUP

FLY-CONTROL
ROUTE

Team Plan:
•  initial conditions,
•  term. cond. : achievability, irrelevance,
unachievability
•  team-level actions.

204

STEAM OML Modelling Dimensions

E

Environment

P

Structural
Specification

OF Functional
Specification

OS

B

B: agents’ possible behaviors
P: agents’ behaviors that lead to global purpose
E: agents’ possible behaviors constrained by the environment
OS: agents’ possible behaviors structurally constrained by the organization
OF: agents’ possible behaviors functionally constrained by the organization

205

STEAM OMI: TEAMCORE [Pynadath and Tambe, 2003]

Team Oriented
Programming
Interface

Team-Oriented Program
(team plans and organization)

execute the team
plans of the team-
oriented program.

TEAMCORE
Wrapper

TEAMCORE
Wrapper

TEAMCORE
Broadcast net

TEAMCORE
Wrapper

TEAMCORE
Wrapper

Middle
agents

Domain
Agent

Agent
Naming
Service

KARMA

Registration

Registration Human

Domain
Agent

Domain
Agent

Human
Beings

requirements for roles
searches for agents with relevant expertise
assists in assigning agents to organizational roles.

206

ISLANDER

I Based on different influences: economics, norms, dialogues,
coordination

; electronic institutions
I Combining different alternative views: dialogical, normative,

coordination
I Institution Description Language:

I Performative structure (Network of protocols),
I Scene (multi-agent protocol),
I Roles,
I Norms

I Ameli as OMI

207

ISLANDER OML: IDL [Esteva et al., 2001]

Performative Structure

(define-institution
 soccer-server as
 dialogic-framework = soccer-df
 performative-structure = soccer-pf
 norms = (free-kick coach-messages …)

)

208

ISLANDER OML Modelling Dimensions

E

Environment

P

B

B: agents’ possible behaviors
P: agents’ behaviors that lead to global purpose
E: agents’ possible behaviors constrained by the environment
OS: agents’ possible/permitted/obliged behaviors structurally constrained by the organisation
OI: agents’ possible/permitted/obliged behaviors interactionally constrained by the organisation

OI Structural
Specification

OS

Dialogical
Specification

209

ISLANDER OMI: AMELI [Esteva et al., 2004]

Communication Layer

S M 1
...

 ...

AMELI

Agents Layer

Institution
Specification

(XML
format)

-

 ...

 ...

S M m I M T M 1 T M k

G 1 G n

 ...

G i

A i A 1 A n

-

P
ub

lic

P
riv

at
e

INSTITUTION
MANAGER

SCENE
MANAGERS

TRANSITION
MANAGERS

GOVERNORS

From [Noriega 04]

210

2OPL slides from Dastani

The aim is to design and develop a programming language to support
the implementation of coordination mechanisms in terms of normative
concepts.

An organisation
I determines effect of external actions
I normatively assesses effect of agents’ actions (monitoring)
I sanctions agents’ wrongdoings (enforcement)
I prevents ending up in really bad states (regimentation)

211

Programming Language for Organisations

Example (Train Station)

Facts:
{ -at_platform , -in_train , -ticket }

Effects:
{ -at_platform } enter { at_platform },
{ -ticket } buy_ticket { ticket },
{ at_platform , -in_train }

embark
{ -at_platform, in_train }

Counts_as rules:
{ at_platform , -ticket } => { viol_ticket },
{ in_train , -ticket } => { viol_|_ }

Sanction_rules:
{ viol_ticket } => { fined_10 }

212

2OPL Modelling Dimension

213

Summary

I Several models
I Several dimensions on modelling organisation

I Structural (roles, groups, ...)
I Functional (global plans,)
I Dialogical (scenes, protocols, ...)
I Normative (norms)

214

Moise
(let’s go programming those nice concepts)

Moise Framework

I OML (language)
I Tag-based language
(issued fromMoise [Hannoun et al., 2000],
Moise+ [Hübner et al., 2002],MoiseInst [Gâteau et al., 2005])

I OMI (infrastructure)
I developed as an artifact-based working environment
(ORA4MAS [Hübner et al., 2009] based on CArtAgO nodes,
refactoring of S-Moise+ [Hübner et al., 2006] and
Synai [Gâteau et al., 2005])

I Integrations
I Agents and Environment (c4Jason, c4Jadex [Ricci et al., 2009b])
I Environment and Organisation ([Piunti et al., 2009a])
I Agents and Organisation (J -Moise+ [Hübner et al., 2007])

216

Moise in JaCaMo Metamodel

Artifact

Operation Agent

Workspace

Environment

Manual

has

use

generateupdate

create
dispose

link, unlink

consult

create
join
quit

Belief

Goal

Plan

External Action Internal Action

create
delete

adopt
leave

create
delete

commit
leave

focus,
unfocus

primitive operationscomposition
association dependencyconcept mapping

Trigger event
Observable Property

dimension border

Action

Observable Event

achieve

Environment
Dimension

Agent
Dimension

Organisation
Dimension

Cardinalities are not represented

Content

Message

SpeechAct

Interaction
Dimension

send
receive

focus,
unfocus

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

217

Moise Framework in JaCaMo

Applicative WorkspaceApplicative Workspace

CArtAgO, Jason, NOPL Engines
Platform

level
Jade, Janus, Java Platforms

Execution
 level

mas-grp@emse.frmas-grp@ufsc.br

Workspace ora4mas

Org.
Spec.
NOPL

op
link op

Portal
Board

\\\

op
link op

Portal
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Workspace
Artifact

\\\

op
link op

Org
Board

\\\op
link op

Workspace
Artifact

\\\

op
link op

Node
Artifact

\\\

op
link op

Node
Artifact

\\\

op
link op

Workspace
Artifact

\\\
op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

op
link op

Applicative
Artifact

\\\

218

Moise Modelling Dimensions

E

Environment

P

OF Functional
Specification

Global goals, plans,
Missions, schemas,
preferences

B
Structural
Specification

Groups, links, roles
Compatibilities, multiplicities
inheritance

OS

Normative Specification
Permissions, Obligations
Allows agents autonomy!

219

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Origins and Fundamentals
Some OOP approaches
Moise Organisation Modeling Language (OML)

Structural specification
Functional specification
Normative specification

Moise Organisation Management Infrastructure (OMI)
Organisational Artifacts

Moise Org. Embodiement Mechanisms for Cartago (E-O)
Moise Org. Awareness Mechanisms in Jason (A-O)
A more coarsed example
Summary

Conclusions

220

Moise OML

I OML for defining organisation specification and organisation entity
I Three independent dimensions [Hübner et al., 2007]

(; well adapted for the reorganisation concerns):
I Structural: Roles, Groups
I Functional: Goals, Missions, Schemes
I Normative: Norms (obligations, permissions, interdictions)

I Abstract description of the organisation for
I the designers
I the agents

; J -Moise [Hübner et al., 2007]
I the Organisation Management Infrastructure

; ORA4MAS [Hübner et al., 2009]

221

Moise OML meta-model (partial & simplified view)

Agent Goal

create
delete

adopt
leave

create
delete commit

leave

achieve

Organisation
Dimension

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

primitive operationscomposition
association dependencyconcept mapping

dimension border
Cardinalities are not represented

structural spec. functional spec. normative spec.

222

Moise OML global picture

Agent

Organisation
Specification

MissionRole

Group Social Scheme

Norm
GoalLink

Organisation

primitive operationscomposition
association dependencyconcept mapping

dimension border
Cardinalities are not represented

structural spec. functional spec. normative spec.

Group Instance

Role Player

Scheme Instance

Mission Player

Organisation
Entity

223

Structural Specification

I Specifies the structure of an MAS along three levels:
I Individual with Role
I Social with Link
I Collective with Group

I Components:
I Role: label used to assign constraints on the behavior of agents
playing it

I Link: relation between roles that directly constrains the agents in
their interaction with the other agents playing the corresponding
roles

I Group: set of links, roles, compatibility relations used to define a
shared context for agents playing roles in it

224

Structural specification
I Defined with the tag structural-specification in the context of an

organisational-specification
I One section for definition of all the roles participating to the

structure of the organisation (role-definitions tag)
I Specification of the group including all subgroup specifications

(group-specification tag)

Example

<organisational-specification
<structural-specification>

<role-definitions> ... </role-definitions>
<group-specification id="xxx">
...

</group-specification>
</structural-specification>
...

</organisational-specification>

225

Role specification

I Role definition(role tag) in role-definitions section, is composed of:
I identifier of the role (id attribute of role tag)
I inherited roles (extends tag) - by default, all roles inherit of the soc
role -

Example

<role-definitions>
<role id="player" />
<role id="coach" />
<role id="middle"> <extends role="player"/> </role>
<role id="leader"> <extends role="player"/> </role>
<role id="r1>
<extends role="r2" />
<extends role="r3" />

</role>
...

</role-definitions>

226

Group specification
I Group definition (group-specification tag) is composed of:

I group identifier (id attribute of group-specification tag)
I roles participating to this group and their cardinality (roles tag and
id, min, max), i.e. min. and max. number of agents that should
adopt the role in the group (default is 0 and unlimited)

I links between roles of the group (link tag)
I subgroups and their cardinality (subgroups tag)
I formation constraints on the components of the group
(formation-constraints)

Example

<group-specification id="team">
<roles>

<role id="coach" min="1" max="2"/> ...
</roles>
<links> ... </links>
<subgroups> ... </subgroups>
<formation-constraints> ... </formation-constraints>

</group-specification>

227

extends-subgroups, scope

extends-subgroups

I Used for links or formation constraints
I if extends-subgroups== true, the link/constraint is also valid in all

subgroups
I else it is valid only in the group where it is defined
I Default is false

scope

I Used for links or formation constraints
I if scope==inter-group: link or constraint exists for source or target

belonging to different instances of the group
I if scope==intra-group: link or constraint exists for source or target

belonging to the same instance of the group

228

Link specification

I Link definition (link tag) included in the group definition is
composed of:

I role identifiers (from, to)
I type (type) with one of the following values: authority,
communication, acquaintance

I a scope (scope)
I and validity to subgroups (extends-subgroups)

Example

<link from="coach"
to="player"
type="authority"
scope="inter-group"
extends-subgroups="true" />

229

Formation constraint specification

I Formation constraints definition (formation-constraints tag) in a
group definition is composed of:

I compatiblity constraints (compatibility tag) between roles (from,
to), with a scope, extends-subgroups and directions (bi-dir)

Example

<formation-constraints>
<compatibility from="middle"

to="leader"
scope="intra-group"
extends-subgroups="false"
bi-dir="true"/>

...
</formation-constraints>

230

Structural specification example (1)

Graphical representation of structural specification of Joj Team

231

Structural specification example (2)

Graphical representation of structural specification of 3-5-2 Joj Team

232

Functional Specification

I Specifies the expected behaviour of an MAS in terms of goals along
two levels:

I Collective with Scheme
I Individual with Mission

I Components:
I Goals:

I Achievement goal (default type). Goals of this type should be
declared as satisfied by the agents committed to them, when
achieved

I Maintenance goal. Goals of this type are not satisfied at a precise
moment but are pursued while the scheme is running.
The agents committed to them do not need to declare that they are
satisfied

I Scheme: global goal decomposition tree assigned to a group
I Any scheme has a root goal that is decomposed into subgoals

I Missions: set of coherent goals assigned to roles within norms

233

Functional specification

I Defined with the tag functional-specification in the context of an
organisational-specification

I Specification in sequence of the different schemes participating to
the expected behaviour of the organisation

Example

<functional-specification>
<scheme id="sideAttack" >

<goal id="dogoal" > ... </goal>
<mission id="m1" min="1" max="5">

...
</mission>
...

</scheme>
...

</functional-specification>

234

Scheme specification

I Scheme definition (scheme tag) is composed of:
I identifier of the scheme (id attribute of scheme tag)
I the root goal of the scheme with the plan aiming at achieving it
(goal tag)

I the set of missions structuring the scheme (mission tag)
I Goal definition within a scheme (goal tag) is composed of:

I an idenfier (id attribute of goal tag)
I a type (achievement default or maintenance)
I min. number of agents that must satisfy it (min) (default is “all”)
I optionally, an argument (argument tag) that must be assigned to a
value when the scheme is created

I optionally a plan
I Plan definition attached to a goal (plan tag) is composed of

I one and only one operator (operator attribute of plan tag) with
sequence, choice, parallel as possible values

I set of goal definitions (goal tag) concerned by the operator

235

Goal States from the Organization Point of View

waiting

satisfiedimpossible

enabled

waiting initial state

enabled goal pre-conditions are satisfied &
scheme is well-formed

satisfied agents committed to the goal have achieved it

impossible the goal is impossible to be satisfied

Note: goal state from the Organization point of view may be different
of the goal state from the Agent point of view

236

Scheme specification example

<scheme id="sideAttack">
<goal id="scoreGoal" min="1" >
<plan operator="sequence">
<goal id="g1" min="1" ds="get the ball" />
<goal id="g2" min="3" ds="to be well placed">
<plan operator="parallel">
<goal id="g7" min="1" ds="go toward the opponent’s field" />
<goal id="g8" min="1" ds="be placed in the middle field" />
<goal id="g9" min="1" ds="be placed in the opponent’s goal area" />

</plan>
</goal>
<goal id="g3" min="1" ds="kick the ball to the m2Ag" >

<argument id="M2Ag" />
</goal>
<goal id="g4" min="1" ds="go to the opponent’s back line" />
<goal id="g5" min="1" ds="kick the ball to the goal area" />
<goal id="g6" min="1" ds="shot at the opponent’s goal" />

</plan>
</goal>
...

237

Mission specification
I Mission definition (mission tag) in the context of a scheme

definition, is composed of:
I identifier of the mission (id attribute of mission tag)
I cardinality of the mission min (0 is default), max (unlimited is
default) specifying the number of agents that can be committed to
the mission

I the set of goal identifiers (goal tag) that belong to the mission

Example

<scheme id="sideAttack">
... the goals ...
<mission id="m1" min="1" max="1">

<goal id="scoreGoal" /> <goal id="g1" />
<goal id="g3" /> ...

</mission>
...

</scheme>

238

Functional specification example (1)

Graphical representation of social scheme for joj team

239

Functional specification example (2)

score a goal

m1

go towards the opponent field

m1, m2, m3

get the ball

be placed in the middle field

be placed in the opponent goal area
kick the ball to (agent committed to m2)

go to the opponent back line

kick the ball to the goal area

shot at the opponent’s goal

m1

m1

m2 m2

m2

m3

m3

Key

goal
missions

success rate parallelismchoicesequence

Scheme

Organizational Entity

Lucio

Cafu

Rivaldo

m1

m2

m3

Graphical representation of social scheme “side_attack” for joj team

240

Normative Specification

I Explicit relation between the functional and structural specifications
I Permissions and obligations to commit to missions in the context

of a role
I The normative specification makes explicit the normative dimension

of a role

241

Normative specification

I Defined with the tag normative-specification in the context of an
organisational-specification

I Specification in sequence of the different norms participating to the
governance of the organisation

Example

<normative-specification>
<norm id="n1" ... />
...
<norm id="..." ... />

</normative-specification>

242

Norm specification

I Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:

I the identifier of the norm (id)
I the type of the norm (type) with obligation, permission as possible
values

I optionally a condition of activation (condition) with the following
possible expressions:

I checking of properties of the organisation (e.g. #role_compatibility,
#mission_cardinality, #role_cardinality, #goal_non_compliance)

; unregimentation of organisation properties !!!
I (un)fulfillment of an obligation stated in a particular norm

(unfulfilled, fulfilled)
I the identifier of the role (role) on which the role is applied
I the identifier of the mission (mission) concerned by the norm
I optionally a time constraint (time-constraint)

243

Norm Specification – example

role deontic mission TTF

back obliged m1 get the ball, go ... 1 minute
left obliged m2 be placed at ..., kick ... 3 minute
right obliged m2 1 day

attacker obliged m3 kick to the goal, ... 30 seconds

<norm id = "n1" type="obligation"
role="back" mission="m1" time-constraint="1 minute"/>

...
<norm id = "n4" type="obligation"

condition="unfulfilled(obligation(_,n2,_,_))"
role="coach" mission="ms" time-constraint="3 hour"/>

...

244

Organisation Entity Dynamics

1. Organisation is created (by the agents)
I instances of groups
I instances of schemes

2. Agents enter into groups adopting roles
3. When a group is well formed, it may become responsible for

schemes
I Agents from the group are then obliged to commit to missions in
the scheme

4. Agents commit to missions

5. Agents fulfil mission’s goals

6. Agents leave schemes and groups

7. Schemes and groups instances are destroyed

245

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Origins and Fundamentals
Some OOP approaches
Moise Organisation Modeling Language (OML)

Structural specification
Functional specification
Normative specification

Moise Organisation Management Infrastructure (OMI)
Organisational Artifacts

Moise Org. Embodiement Mechanisms for Cartago (E-O)
Moise Org. Awareness Mechanisms in Jason (A-O)
A more coarsed example
Summary

Conclusions

246

Organisation management infrastructure (OMI)
Responsibility

I Managing – coordination, regulation – the agents’ execution within
organisation defined by an organisational specification

Organisation
Program

OMI

AgentAgentAgentAgent

(e.g. MadKit, AMELI, S-Moise+, ...)

247

ORA4MAS
Based on A&A andMoise, Agents’ working environment is
instrumented with Organizational Artifacts (OA) offering
”organizational” actions
; Distributed management of the organization with a clear separation
of concerns:
I Agents:

I create, handle OAs and act on them
; deploy and manage their OMI

I perceive the organization state and
violations of norms from the OAs

I decide about sanctions
I OAs are in charge of interpreting

Normative Programs
I to detect and evaluate norms
compliance

I or to regiment norms

Workspace ora4mas

Org.
Spec.
NOPL

agent

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Scheme
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Group
Board

\\\

op
link op

Workspace
Artifact

\\\
agent

agent

248

Normative Programming Language
The NPL norms have
I an activation condition
I a consequence

Two kinds of consequences are considered
I regimentations
I obligations

Example (Norm)

norm n1: plays(A,writer,G) -> fail.

or

norm n1: plays(A,writer,G)
-> obligation(A,n1,plays(A,editor,G),

‘now + 3 min‘).

249

Obligations life cycle

d > nowactive

fulfilled

unfulfilled

inactive

g

¬ ø

ø

norm n : φ −> obligation(a, r ,g,d)

I φ: activation condition of the norm (e.g. play a role)
I g: the goal of the obligation (e.g. commit to a mission)
I d : the deadline of the obligation

250

Structural Operational Semantics

A normative system configuration is a tuple: 〈F ,N,ns,OS ,t〉
with
I F is a set of facts
I N is a set of norms
I ns is the state of the normative system (sound state > or a failure

state ⊥)
I OS is a set of obligations

each element os ∈OS is 〈o,ost〉
where o obligation and ost its state

I t is the current time

The initial configuration of a NP P is 〈PF ,PN ,>,∅,0〉
I PF and PN are the initial facts and norms defined in the normative

program P

251

Rules for Norm Management

I Failure detection:

n ∈ N F |= nϕ nψ = fail(_)

〈F ,N,>,OS ,t〉 −→ 〈F ,N,⊥,OS ,t〉
(Regim)

when any norm n becomes active (i.e., its condition component holds in the
current state) and its consequence is fail(_), the normative state is no
longer sound but in failure (⊥).

I Roll back from failure:

∀n ∈ N.(F |= nϕ =⇒ nψ 6= fail(_))

〈F ,N,⊥,OS,t〉 −→ 〈F ,N,>,OS,t〉
(Consist)

252

Rules for Norm Management (continued)

I Creation of obligation:

n ∈ N F |= nϕ nψ = o oθd > t

¬∃〈o ′,ost〉 ∈OS . (o ′ obl
= oθ∧ost 6= inactive)

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,OS ∪〈oθ,active〉,t〉

where θ is the m.g.u. such that F |= oθ

(Oblig)

253

Rules for Obligation Management

os ∈OS os = 〈o,active〉
F |= og od ≥ t

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,(OS \{os})∪{〈o, fulfilled〉},t〉

(Fulfil)

os ∈OS os = 〈o,active〉 od < t

〈F ,N,>,OS ,t〉 −→
〈F ,N,>,(OS \{os})∪{〈o,unfulfilled〉},t〉

(Unfulfil)

os ∈OS os = 〈o,active〉 F 6|= or
〈F ,N,>,OS ,t〉 −→

〈F ,N,>,(OS \{os})∪{〈o, inactive〉},t〉

(Inactive)

254

NOPL
Normative Organisation Programming Language

I NOPL is a particular class of NPL: facts, rules and norms are
specific to a OML (eg. Moise NOML):

id condition role type mission TTF

n2 writer obl mCol 1 day
n3 writer obl mBib 1 day
n4 unfulfilled(n2) editor obl ms 3 hours
n5 fulfilled(n3) editor obl mr 3 hours
n6 #gnc editor obl ms 3 hours
n7 #rc editor obl ms 30 minutes
n6 #mc editor obl ms 1 hour
...

#gnc = goal_non_compliance
#rc = role_compatibility
#mc = mission_cardinality

255

OS inMoise OML to NOPL translation

Example (role cardinality norm – regimentation)

group_role(writer,1,5).

norm ncar: group_role(R,_,M) &
rplayers(R,G,V) & V > M

-> fail(role_cardinality(R,G,V,M)).

Example (role cardinality norm – agent decision)

norm ncar: group_role(R,_,M) &
rplayers(R,G,V) & V > M &
plays(E,editor,G)

-> obligation(E,ncar,committed(E,ms,_),
‘now + 1 hour‘).

256

Moise Social scheme — NOPL — Facts

I Static facts:
I scheme_mission(m,max ,min): cardinality of mission m;
I goal(m,g,pre-cond ,‘ttf ‘): mission, preconditions and TTF for goal
g.

I Dynamic facts (provided at run-time by the organisational artifact
in charge of the management of the social scheme instance):

I plays(a,ρ,gr): agent a plays the role ρ in the group instance
identified by gr .

I responsible(gr ,s): the group instance gr is responsible for the
missions of the scheme instance s.

I committed(a,m,s): the agent a is committed to mission m in
scheme s.

I achieved(s,g,a): the goal g has been achieved in the scheme s by
the agent a.

257

Moise Social scheme — NOPL — Rules

I Example of rules used to infer the state of the scheme:
I Number of players of mission M in scheme S:
mplayers(M,S,V) :-

.count(committed(_,M,S),V).
I Wellformedness property of scheme S:
well_formed(S) :-

mplayers(mBib,S,V1) & V1 >= 1 & V1 <= 1 &
mplayers(mCol,S,V2) & V2 >= 1 & V2 <= 5 &
mplayers(mMan,S,V3) & V3 >= 1 & V3 <= 1.

I Readyness of goal G in scheme S (i.e. goal is ready to be achieved):
ready(S,G) :-

goal(_, G, PCG, _) & all_achieved(S,PCG).
all_achieved(_,[]).
all_achieved(S,[G|T]) :-

achieved(S,G,_) & all_achieved(S,T).

258

Moise Social scheme — NOPL — Norms
Norms for goals

I Agents are obliged to achieve their ready goals
norm ngoa:
committed(A,M,S) & goal(M,G,_,D) &
well_formed(S) & ready(S,G)
-> obligation(A,ngoa,achieved(S,G,A),‘now‘ + D).

Norms for properties

I Mission cardinality as regimentation
norm mission_cardinality:
scheme_mission(M,_,MMax) & mplayers(M,S,MP) & MP > MMax
-> fail(mission_cardinality).

I Mission cardinality as obligation
norm mission_cardinality:
scheme_mission(M,_,MMax) & mplayers(M,S,MP) & MP > MMax
responsible(Gr,S) & plays(A,editor,Gr)
-> obligation(A,mission_cardinality,

committed(A,ms,_), ‘now‘+‘1 hour‘).

259

Moise — NOPL — Norms

; Definition of similar kinds of facts, rules and norms for the groups,
roles in the structural specification

I Domain norms:
I Each norm in the normative specification of the OS has a
corresponding norm in the NOP

I Since in the OS, obligations refer to roles and missions, norms in
corresponding NOP identify the agents playing the role in groups
responsible for the scheme and take into account the property
conditions.

norm n2:
plays(A,writer,Gr) & responsible(Gr,S) &
mplayers(mCol,S,V) & V < 5

-> obligation(A,n2,committed(A,mCol,S),‘now‘+‘1 day‘).

260

Organisational Artifact Architecture
Org. Artifacts managing groups and social schemes execution:
I interpret programs written in Normative Programming Language

(NPL) [Hübner et al., 2010] coming from the automatic
translation ofMoise programs

I generate signals
I oblCreated(o), oblFulfilled(o), oblUnfulfilled(o)
I oblInactive(o), normFailure(f)
(o = obligation(to whom, reason, what, deadline))

Organizational Artifact

State

 Moise
Spec.

Obligations
State

NOPL Program

NPL Engine

translated

NPL Interpreter\\\

operation
operation
operation

link operation
link operation
link operation

261

Generic control cycle of an Organisational Artifact

// oe: current state of the org. managed by the artifact
// p: current NOPL program
// npi: NPL interpreter
When operation o is triggered by agent a do
oe’ <- oe \\ creates a ‘‘backup’’ of current oe
oe <- executes(o,oe)
f <- a list of predicates representing oe
r <- npi(p,f) \\ runs the interpreter for the new state
If r == fail then
oe <- oe’ \\ restore the state backup
fail operation o

else
update observable properties from obligations state
success operation o

262

ORA4MAS– GroupBoard artifact

Manages the functioning of an instance of group in the organization.

I Operations:
I adoptRole(role) (resp. leaveRole(role)):
attempts to adopt (resp. leave) role in the
group

I addScheme(schid) (resp.
removeScheme(schid)): attempts to set
(resp. unset) the group responsible for the
scheme managed by the SchemeBoard schId

I Observable Properties:
I specification: group spec. in the OS
I player: list of players of role in the group
I schemes: list of scheme identifiers that the
group is responsible for

GroupBoard

specification

play(agent,role,group)

schemes

subgroups

\\\

adoptRole
leaveRole
removeScheme

parentGroup

formationStatus

setParentGroup
setOwner
destroy

addScheme

263

ORA4MAS– SchemeBoard artifact
Manages the functioning of an instance of social scheme in the
organization.

I Operations:
I commitMission(mission) (resp.
leaveMission): attempts to “commit” (resp
“leave”) a mission in the scheme

I goalAchieved(goal): declares that goal is
achieved

I setArgumentValue(goal, argument, value):
defines the value of goal’s argument

I Observable Properties:
I specification: scheme spec. in the OS
I commitments: list of commitments to
missions in the scheme

I groups: list of groups resp. for the scheme
I goalState: list of goals’ current state
I obligation: list of active obligations in the
scheme

SchemeBoard

specification

commitment(agent,mission,scheme)

groups

goalState

\\\

commitMission
leaveMission
goalAchieved

obligation(agt,norm,goal,deadline)

setArgumentValue
resetGoal
destroy

264

Partial Synthesis

I NPL, based on obligation and regimentation, formalised using
operational semantics, specialised into NOPL

I Automatic translation of OS written inMoise OML into several
NOPs

I Implementation in ORA4MAS, artifact-based OMI: Organisational
Artifacts act as interpreters of NOPs.

I NOPL (80%): dynamic of obligations (several aspects of the
Moise OS have been translated to norms)

I CArtAgO (10%): interface for agents
I Java (10%): dynamic of organisational state

265

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Origins and Fundamentals
Some OOP approaches
Moise Organisation Modeling Language (OML)

Structural specification
Functional specification
Normative specification

Moise Organisation Management Infrastructure (OMI)
Organisational Artifacts

Moise Org. Embodiement Mechanisms for Cartago (E-O)
Moise Org. Awareness Mechanisms in Jason (A-O)
A more coarsed example
Summary

Conclusions

266

Environment integration

I Organisational Artifacts enable organisation and environment
integration

I Embodied organisation [Piunti et al., 2009a]

Env. Artifact Org. Artifact
count-as

enact

count-as

status: ongoing work

267

Constitutive rules

Count-As rule
An event occurring on an artifact, in a particular context, may
“count-as” an institutional event
I transforms the events created in the working environment into

activation of an organisational operation

; indirect automatic updating of the organisation

Enact rule
An event produced on an organisational artifact, in a specific
institutional context, may “enact” change and updating of the working
environment (i.e., to promote equilibrium, avoid undesiderable states)
I Installing automated control on the working environment
I Even without the intervention of organisational/staff agents

(regimenting actions on physical artifacts, enforcing sanctions, ...)

268

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Origins and Fundamentals
Some OOP approaches
Moise Organisation Modeling Language (OML)

Structural specification
Functional specification
Normative specification

Moise Organisation Management Infrastructure (OMI)
Organisational Artifacts

Moise Org. Embodiement Mechanisms for Cartago (E-O)
Moise Org. Awareness Mechanisms in Jason (A-O)
A more coarsed example
Summary

Conclusions

269

Agent integration

I Agents can interact with organisational artifacts as with ordinary
artifacts by perception and action

; Any Agent Programming Language integrated with CArtAgO can
use organisational artifacts

Agent integration provides some “internal” tools for the agents to
simplify their interaction with the organisation:
I maintenance of a local copy of the organisational state
I production of organisational events
I provision of organisational actions

270

J -Moise: Jason +Moise

I Agents are programmed with Jason

; BDI agents (reactive planning) – suitable abstraction level
I The programmer has the possibility to express sophisticated recipes

for adopting roles, committing to missions, fulfilling/violating
norms, ...

I Organisational information is made accessible in the mental state
of the agent as beliefs

I Integration is totally independent of the
distribution/communication layer

271

J -Moise: Jason +Moise– General view

Jason-CArtAgo Agent

Plan
Library

Belief
Base

Organisational Workspace (CArtAgO)

Intentions

J-Moise+
Organisation	 Integration	 mechanism

272

Organisational actions in Jason I
Example (GroupBoard)

...
joinWorkspace("ora4mas",O4MWsp);
makeArtifact(

"auction",
"ora4mas.nopl.GroupBoard",
["auction-os.xml", auctionGroup, false, true],
GrArtId);

adoptRole(auctioneer);
focus(GrArtId);
...

273

Organisational actions in Jason II
Example (SchemeBoard)

...
makeArtifact(

"sch1",
"ora4mas.nopl.SchemeBoard",
["auction-os.xml", doAuction, false, true],
SchArtId);

focus(SchArtId);
addScheme(Sch);
commitMission(mAuctioneer)[artifact_id(SchArtId)];
...

274

Organisational actions in Jason III

I For roles:
I adoptRole
I leaveRole

I For missions:
I commitMission
I leaveMission

I Those actions usually are executed under regimentation (to avoid
an inconsistent organisational state)
e.g. the adoption of role is constrained by

I the cardinality of the role in the group
I the compatibilities of the roles played by the agent

275

Organisational perception

When an agent focus on an Organisational Artifact, the observable
properties (Java objects) are translated to beliefs with the following
predicates:
I specification
I schemeSpecification
I play(agent, role, group)
I commitment(agent, mission, scheme)
I goalState(scheme, goal, list of committed agents, list of agent that

achieved the goal, state of the goal)
I obligation(agent,norm,goal,dead line)
I normFailure(norm)

276

Organisational perception – example

277

Handling organisational events in Jason
Whenever something changes in the organisation, the agent
architecture updates the agent belief base accordingly producing events
(belief update from perception)

Example (new agent entered the group)

+play(Ag,boss,GId) <- .send(Ag,tell,hello).

Example (change in goal state)

+goalState(Scheme,wsecs,_,_,satisfied)
: .my_name(Me) & commitment(Me,mCol,Scheme)

<- leave_mission(mColaborator,Scheme).

Example (signals)

+normFailure(N) <- .print("norm failure event: ", N).
278

Typical plans for obligations

Example

+obligation(Ag,Norm,committed(Ag,Mission,Scheme),DeadLine)
: .my_name(Ag)

<- .print("I am obliged to commit to ",Mission);
commit_mission(Mission,Scheme).

+obligation(Ag,Norm,achieved(Sch,Goal,Ag),DeadLine)
: .my_name(Ag)

<- .print("I am obliged to achieve goal ",Goal);
!Goal[scheme(Sch)];
goal_achieved(Goal,Sch).

+obligation(Ag,Norm,What,DeadLine)
: .my_name(Ag)
<- .print("I am obliged to ",What,

", but I don’t know what to do!").

279

Writing paper example
Organisation Specification

<organisational-specification
<structural-specification>

<role-definitions>
<role id="author" />
<role id="writer"> <extends role="author"/> </role>
<role id="editor"> <extends role="author"/> </role>

</role-definitions>

<group-specification id="wpgroup">
<roles>

<role id="writer" min="1" max="5" />
<role id="editor" min="1" max="1" />

</roles>
...

280

Writing paper sample I
Execution

jaime action: jmoise.create_group(wpgroup)

all perception: group(wpgroup,g1)[owner(jaime)]

jaime action: jmoise.adopt_role(editor,g1)

olivier action: jmoise.adopt_role(writer,g1)

jomi action: jmoise.adopt_role(writer,g1)

all perception:
play(jaime,editor,g1)
play(olivier,writer,g1)
play(jomi,writer,g1)

281

Writing paper sample II
Execution

jaime action: jmoise.create_scheme(writePaperSch, [g1])

all perception: scheme(writePaperSch,s1)[owner(jaime)]

all perception: scheme_group(s1,g1)

jaime perception:
permission(s1,mManager)[role(editor),group(wpgroup)]

jaime action: jmoise.commit_mission(mManager,s1)

olivier perception:
obligation(s1,mColaborator)[role(writer),group(wpgroup),
obligation(s1,mBib)[role(writer),group(wpgroup)

olivier action: jmoise.commit_mission(mColaborator,s1)

olivier action: jmoise.commit_mission(mBib,s1)

jomi perception:
obligation(s1,mColaborator)[role(writer),group(wpgroup),
obligation(s1,mBib)[role(writer),group(wpgroup)]

jomi action: jmoise.commit_mission(mColaborator,s1)

282

Writing paper sample III
Execution

all perception:
commitment(jaime,mManager,s1)
commitment(olivier,mColaborator,s1)
commitment(olivier,mBib,s1)
commitment(jomi,mColaborator,s1)

283

Writing paper sample IV
Execution

all perception: goal_state(s1,*,unsatisfied)

jaime (only wtitle is possible, Jaime should work)
event: +!wtitle
action: jmoise.set_goal_state(s1,wtitle,satisfied)

284

Writing paper sample V
Execution

jaime event: +!wabs
action: jmoise.set_goal_state(s1,wabs,satisfied)

285

Writing paper sample VI
Execution

jaime event: +!wsectitles
action: jmoise.set_goal_state(s1,wsectitles,satisfied)

286

Writing paper sample VII
Execution

olivier, jomi event: +!wsecs
action: jmoise.set_goal_state(s1,wsecs,satisfied)

287

Writing paper sample VIII
Execution

jaime event: +!wcon; ...

olivier event: +!wref; ...

288

Writing paper sample IX
Execution

all action: jmoise.remove_mission(s1)

jaime action: jmoise.jmoise.remove_scheme(s1)

289

Useful tools — Mind inspector

290

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Origins and Fundamentals
Some OOP approaches
Moise Organisation Modeling Language (OML)

Structural specification
Functional specification
Normative specification

Moise Organisation Management Infrastructure (OMI)
Organisational Artifacts

Moise Org. Embodiement Mechanisms for Cartago (E-O)
Moise Org. Awareness Mechanisms in Jason (A-O)
A more coarsed example
Summary

Conclusions

291

MAPC - Agent on Mars Scenario

292

MAPC - Agent on Mars Scenario

293

LTI Team - A Jacamo Solution

294

LTI Team - Structural Specification

295

LTI Team - Structural Specification

296

LTI Team Code 1 - Coordinator Creates Groups

297

LTI Team - Functional Specification

298

LTI Team - Functional Specification

299

LTI Team - Functional Specification

300

LTI Team Code 2 - Coordinator Creates Schemes and
Links to Teams

301

LTI Team - Normative Specification

302

LTI Team Code 3 - Adopting a Role

303

LTI Team Code 4 - Commiting to a Mission

304

Outline

Introduction
Definitions
Conceptual Framework
MAOP Meta-Model
Focus on Agent meta-model
Focus on Environment meta-model
Focus on Organisation meta-model

AOP: Agent Oriented Programming
Reasoning Cycle
Tools
Shortfalls
Trends
Conclusions

EOP: Environment Oriented Programming

OOP: Organisation Oriented Programming
Origins and Fundamentals
Some OOP approaches
Moise Organisation Modeling Language (OML)

Structural specification
Functional specification
Normative specification

Moise Organisation Management Infrastructure (OMI)
Organisational Artifacts

Moise Org. Embodiement Mechanisms for Cartago (E-O)
Moise Org. Awareness Mechanisms in Jason (A-O)
A more coarsed example
Summary

Conclusions

305

Summary

I Ensures that the agents follow some of the constraints specified for
the organisation

I Helps the agents to work together
I The organisation is interpreted at runtime, it is not hardwired in

the agents code
I The agents ‘handle’ the organisation (i.e. their artifacts)
I It is suitable for open systems as no specific agent architecture is

required

I All available as open source at

http://moise.souceforge.net

306

http://moise.souceforge.net

Summary

I Jason
I declarative and goal oriented programming
I goal patterns (maintenance goal)
I meta-programming (.drop intention([group(g1)])
I customisations (integration with the simulator and the organisation)
I internal actions (code in Java)

; good programming style
I Moise Framework

I definition of groups and roles
I allocation of goals to agents based on their roles
I to change the team, we (developers) “simply” change the
organisation

I global orchestration
; team strategy defined at a high level

307

Conclusions

Putting the Pieces Together

BELIEFS
GOALS
PLANS

INTERNAL
EVENTS

ACTIONSPERCEPTIONS

AGENTS

MISSIONS

ROLES

DEONTIC RELATIONS

GROUPS

NORMS

SANCTIONS
REWARDS

ORGANISATIONS

RESOURCES

LEGACY

SERVICES OBJECTS

ENVIRONMENTS

COMMUNICATION
LANGUAGES

INTERACTION
PROCOLS

SPEECH
ACTS

INTERACTIONS

MOISE
Framework

JASON
Agent Prog.
Language

JADE
Platform

CarTaGO
Platform?

309

Agent meta-model

Agent

Belief

Goal

Plan

External Action Internal Action

agent's actionscomposition
association

dependency
concept mapping

Trigger event

dimension border

Action

Agent
Dimension

Cardinalities are not represented

310

Environment meta-model

Artifact

Operation

Workspace

Work Environment

Manual

has

generateupdate

composition
association

dependency

Observable Property Observable Event

Cardinalities are not represented 311

A & E Interaction meta-model

Artifact

Operation Agent

Workspace

Work Environment

Manual

has

use

generateupdate

create
dispose

link

consult

join
quit

Belief

Goal

Plan

External Action Internal Action

perceive

agent's actionscomposition
association

dependency
concept mapping

Trigger eventObservable Property

dimension border

Action

Observable Event

Agent
Dimension

Environment
Dimension

Cardinalities are not represented

312

Organisation meta-model

MissionRole

Group

Social Scheme

composition
association Cardinalities are not represented

Norm

Goal

Structural
Specification

Normative
Specification

Functional
Specification

313

JaCaMo Meta-Model

Artifact

Operation Agent

Workspace

Work Environment

Manual

has

use

generateupdate

create
dispose

link

consult

join
quit

Belief

Goal

Plan

External Action Internal Action

Mission
Role

Group
Social Scheme

create
delete

adopt
leave

create
delete

commit
leave

perceive

Trigger eventObservable Property

Norm

Goal

Action

Observable Event

Agent
dimension

Environment
dimension

Organisation
dimension

agent's actionscomposition
association
dependency concept mapping

dimension border

Le
ge

nd

314

JaCaMo binding concepts

Ag

Org

Env

role adoption

obligations

act
perceive

co
un

t-a
s

speech
acts

315

Multi Agent Oriented Programming!

I MAS is not only agents
I MAS is not only organisation
I MAS is not only environment
I MAS is not only interaction

MAS has many dimensions
all as first class entities

316

Research on Multi-Agent Systems...

—
Whatever you do in MAS, make it available in a
programming language/platform for MAS!!!

—

317

Bibliography I
Behrens, T. M., Hindriks, K. V., Bordini, R. H., Braubach, L., Dastani, M., Dix, J.,
Hübner, J. F., and Pokahr, A. (2010).
An interface for agent-environment interaction.
In Collier, R. W., Dix, J., and Novák, P., editors, Programming Multi-Agent Systems - 8th
International Workshop, ProMAS 2010, Toronto, ON, Canada, May 11, 2010. Revised
Selected Papers, volume 6599 of Lecture Notes in Computer Science, pages 139–158.
Springer.

Bernoux, P. (1985).
La sociologie des organisations.
Seuil, 3ème edition.

Boella, G., Torre, L., and Verhagen, H. (2008).
Introduction to the special issue on normative multiagent systems.
Autonomous Agents and Multi-Agent Systems, 17(1):1–10.

Boissier, O. (2003).
Contrôle et coordination orientés multi-agents.
Habilitation à diriger des recherches, ENS Mines Saint-Etienne et Université Jean Monnet.

Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A. (2011).
Multi-agent oriented programming with jacamo.
Science of Computer Programming, pages –.

Bordini, R., Hübner, J., and Wooldridge, M. (2007a).
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Wiley-Interscience.

318

Bibliography II

Bordini, R. H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A. E., Gómez-Sanz, J. J.,
Leite, J., O’Hare, G. M. P., Pokahr, A., and Ricci, A. (2006).
A survey of programming languages and platforms for multi-agent systems.
Informatica (Slovenia), 30(1):33–44.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors (2005).
Multi-Agent Programming: Languages, Platforms and Applications, volume 15 of
Multiagent Systems, Artificial Societies, and Simulated Organizations.
Springer.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors (2009).
Multi-Agent Programming: Languages, Tools and Applications.
Springer.

Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007b).
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

Bordini, R. H., Hübner, J. F., and Wooldrige, M. (2007c).
Programming Multi-Agent Systems in AgentSpeak using Jason.
Wiley Series in Agent Technology. John Wiley & Sons.

Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988).
Plans and resource-bounded practical reasoning.
Computational Intelligence, 4:349–355.

319

Bibliography III

Bromuri, S. and Stathis, K. (2008).
Situating Cognitive Agents in GOLEM.
In Weyns, D., Brueckner, S., and Demazeau, Y., editors, Engineering
Environment-Mediated Multi-Agent Systems, volume 5049 of LNCS, pages 115–134.
Springer Berlin / Heidelberg.

Campos, J., López-Sánchez, M., Rodriguez-Aguilar, J. A., and Esteva, M. (2009).
Formalising situatedness and adaptation in electronic institutions.
In Coordination, Organizations, Institutions and Norms in Agent Systems IV, volume
5428/2009 of LNCS. Springer Berlin / Heidelberg.

Carabelea, C. (2007).
Reasoning about autonomy in open multi-agent systems - an approach based on the social
power theory.
in french, ENS Mines Saint-Etienne.

Castebrunet, M., Boissier, O., Giroux, S., and Rialle, V. (2010).
Organization nesting in a multi-agent application for ambient intelligence.
In Demazeau, Y. and Dignum, F., editors, Proceedings of the 8th International Conference
on Practical Applications of Agents and Multi-Agent Systems (PAAMS’2010), Advances in
Intelligent and Soft-Computing. Springer.

Ciortea, A. (2011).
Modeling relationships for privacy preservation in virtual communities.
Master’s thesis, University Politehnica of Bucharest.

320

Bibliography IV

Dastani, M. (2008a).
2apl: a practical agent programming language.
Autonomous Agents and Multi-Agent Systems, 16(3):214–248.

Dastani, M. (2008b).
2APL: a practical agent programming language.
Autonomous Agent and Multi-Agent Systems, 16(3):214–248.

de Brito, M., Hübner, J. F., and Bordini, R. H. (2012).
Programming institutional facts in multi-agent systems.
In COIN-12, Proceedings.

Demazeau, Y. (1995).
From interactions to collective behaviour in agent-based systems.
In Proc. of the 1st European Conf. on Cognitive Science. Saint-Malo, pages 117–132.

Demazeau, Y. (1997).
Steps towards multi-agent oriented programming.
(slides Workshop) 1st International Workshop on Multi-Agent Systems, IWMAS’97,
Boston.

Esteva, M., Rodriguez-Aguiar, J. A., Sierra, C., Garcia, P., and Arcos, J. L. (2001).
On the formal specification of electronic institutions.
In Dignum, F. and Sierra, C., editors, Proceedings of the Agent-mediated Electronic
Commerce, LNAI 1191, pages 126–147, Berlin. Springer.

321

Bibliography V

Esteva, M., Rodríguez-Aguilar, J. A., Rosell, B., and Arcos, J. L. (2004).
AMELI: An agent-based middleware for electronic institutions.
In Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors, Proceedings of the
Third International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’2004), pages 236–243, New York. ACM.

Ferber, J. and Gutknecht, O. (1998).
A meta-model for the analysis and design of organizations in multi-agents systems.
In Demazeau, Y., editor, Proceedings of the 3rd International Conference on Multi-Agent
Systems (ICMAS’98), pages 128–135. IEEE Press.

Fisher, M. (2005).
Metatem: The story so far.
In Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E., editors, PROMAS,
volume 3862 of Lecture Notes in Computer Science, pages 3–22. Springer.

Fisher, M., Bordini, R. H., Hirsch, B., and Torroni, P. (2007).
Computational logics and agents: A road map of current technologies and future trends.
Computational Intelligence, 23(1):61–91.

Gasser, L. (2001).
Organizations in multi-agent systems.
In Pre-Proceeding of the 10th European Worshop on Modeling Autonomous Agents in a
Multi-Agent World (MAAMAW’2001), Annecy.

322

Bibliography VI
Gâteau, B., Boissier, O., Khadraoui, D., and Dubois, E. (2005).
Moiseinst: An organizational model for specifying rights and duties of autonomous agents.
In Third European Workshop on Multi-Agent Systems (EUMAS 2005), pages 484–485,
Brussels Belgium.

Giacomo, G. D., Lespérance, Y., and Levesque, H. J. (2000).
Congolog, a concurrent programming language based on the situation calculus.
Artif. Intell., 121(1-2):109–169.

Gutknecht, O. and Ferber, J. (2000a).
The MADKIT agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55.

Gutknecht, O. and Ferber, J. (2000b).
The MadKit agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55.

Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat, C. (2000).
Moise: An organizational model for multi-agent systems.
In Monard, M. C. and Sichman, J. S., editors, Proceedings of the International Joint
Conference, 7th Ibero-American Conference on AI, 15th Brazilian Symposium on AI
(IBERAMIA/SBIA’2000), Atibaia, SP, Brazil, November 2000, LNAI 1952, pages
152–161, Berlin. Springer.

Hindriks, K. V. (2009).
Programming rational agents in GOAL.
In [Bordini et al., 2009], pages 119–157.

323

Bibliography VII
Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer, J.-J. C. (1997).
Formal semantics for an abstract agent programming language.
In Singh, M. P., Rao, A. S., and Wooldridge, M., editors, ATAL, volume 1365 of Lecture
Notes in Computer Science, pages 215–229. Springer.

Hübner, J. F., Boissier, O., and Bordini, R. H. (2010).
A normative organisation programming language for organisation management
infrastructures.
In et al., J. P., editor, Coordination, Organizations, Institutions and Norms in Agent
Systems V, volume 6069 of LNAI, pages 114–129. Springer.

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009).
Instrumenting Multi-Agent Organisations with Organisational Artifacts and Agents.
Journal of Autonomous Agents and Multi-Agent Systems.

Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009).
Instrumenting multi-agent organisations with organisational artifacts and agents: “Giving
the organisational power back to the agents”.
Autonomous Agents and Multi-Agent Systems.
DOI-URL: http://dx.doi.org/10.1007/s10458-009-9084-y.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2002).
A model for the structural, functional, and deontic specification of organizations in
multiagent systems.
In Bittencourt, G. and Ramalho, G. L., editors, Proceedings of the 16th Brazilian
Symposium on Artificial Intelligence (SBIA’02), volume 2507 of LNAI, pages 118–128,
Berlin. Springer.

324

Bibliography VIII

Hübner, J. F., Sichman, J. S., and Boissier, O. (2006).
S-MOISE+: A middleware for developing organised multi-agent systems.
In Boissier, O., Dignum, V., Matson, E., and Sichman, J. S., editors, Coordination,
Organizations, Institutions, and Norms in Multi-Agent Systems, volume 3913 of LNCS,
pages 64–78. Springer.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2007).
Developing Organised Multi-Agent Systems Using the MOISE+ Model: Programming
Issues at the System and Agent Levels.
Agent-Oriented Software Engineering, 1(3/4):370–395.

Hübner, J. F., Vercouter, L., and Boissier, O. (2009).
Instrumenting Multi-Agent Organisations with reputation artifacts.
In Hubner, J. F., Matson, E., Boissier, O., and Dignum, V., editors, Coordination,
Organizations, Institutions, and Norms in Agent Systems IV, volume 5428 of LNAI, pages
96–110. Springer.

Huhns, M. N. (2001).
Interaction-oriented programming.
In First international workshop, AOSE 2000 on Agent-oriented software engineering, pages
29–44, Secaucus, NJ, USA. Springer-Verlag New York, Inc.

Kitio, R. (2011).
Gestion de l’ouverture au sein d’organisations multi-agents. Une approche basée sur des
artefacts organisationnels.
PhD thesis, ENS Mines Saint-Etienne.

325

Bibliography IX

Malone, T. W. (1999).
Tools for inventing organizations: Toward a handbook of organizational process.
Management Science, 45(3):425–443.

Molesini, A., Omicini, A., Denti, E., and Ricci, A. (2005).
SODA: A roadmap to artefacts.
In Dikenelli, O., Gleizes, M.-P., and Ricci, A., editors, 6th International Workshop
“Engineering Societies in the Agents World” (ESAW’05), pages 239–252, Kuşadası, Aydın,
Turkey. Ege University.

Morin, E. (1977).
La méthode (1) : la nature de la nature.
Points Seuil.

Occello, M., Baeijs, C., Demazeau, Y., and Koning, J.-L. (2004).
MASK: An AEIO toolbox to design and build multi-agent systems.
In et al., C., editor, Knowledge Engineering and Agent Technology, IOS Series on Frontiers
in AI and Applications. IOS press, Amsterdam.

Okuyama, F. Y., Bordini, R. H., and da Rocha Costa, A. C. (2008).
A distributed normative infrastructure for situated multi-agent organisations.
In Baldoni, M., Son, T. C., van Riemsdijk, M. B., and Winikoff, M., editors, DALT, volume
5397 of Lecture Notes in Computer Science, pages 29–46. Springer.

326

Bibliography X

Oliva, E., McBurney, P., Omicini, A., and Viroli, M. (2010).
Argumentation and artifacts for negotiation support.
International Journal of Artificial Intelligence, 4(S10):90–117.
Special Issue on Negotiation and Argumentation in Artificial Intelligence.

Omicini, A., Ricci, A., and Viroli, M. (2008).
Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17(3):432–456.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., and Tummolini, L. (2004).
Coordination artifacts: Environment-based coordination for intelligent agents.
In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS’04), volume 1, pages 286–293, New York, USA. ACM.

Ossowski, S. (1999).
Co-ordination in Artificial Agent Societies: Social Structures and Its Implications for
Autonomous Problem-Solving Agents, volume 1535 of LNAI.
Springer.

Piunti, M. and Ricci, A. (2009).
Cognitive artifacts for intelligent agents in mas: Exploiting relevant information residing in
environments.
In Knowledge Representation for Agents and Multi-Agent Systems (KRAMAS 2008),
volume 5605 of LNAI. Springer.

327

Bibliography XI

Piunti, M., Ricci, A., Boissier, O., and Hubner, J. (2009a).
Embodying organisations in multi-agent work environments.
In IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT 2009), Milan, Italy.

Piunti, M., Ricci, A., Boissier, O., and Hübner, J. F. (2009b).
Embodied organisations in mas environments.
In Braubach, L., van der Hoek, W., Petta, P., and Pokahr, A., editors, Proceedings of 7th
German conference on Multi-Agent System Technologies (MATES 09), Hamburg,
Germany, September 9-11, volume 5774 of LNCS, pages 115–127. Springer.

Piunti, M., Ricci, A., Braubach, L., and Pokahr, A. (2008).
Goal-directed interactions in artifact-based mas: Jadex agents playing in CARTAGO
environments.
In Proc. of the 2008 IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent
Technology (IAT’08), volume 2. IEEE Computer Society.

Platon, E., Mamei, M., Sabouret, N., Honiden, S., and Parunak, H. V. (2007).
Mechanisms for environments in multi-agent systems: Survey and opportunities.
Autonomous Agents and Multi-Agent Systems, 14(1):31–47.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2005).
Jadex: A bdi reasoning engine.
In [Bordini et al., 2005], pages 149–174.

328

Bibliography XII

Pynadath, D. V. and Tambe, M. (2003).
An automated teamwork infrastructure for heterogeneous software agents and humans.
Autonomous Agents and Multi-Agent Systems, 7(1-2):71–100.

Pynadath, D. V., Tambe, M., Chauvat, N., and Cavedon, L. (1999).
Toward team-oriented programming.
In Jennings, N. R. and Lespérance, Y., editors, ATAL, volume 1757 of LNCS, pages
233–247. Springer.

Rao, A. S. (1996).
Agentspeak(l): Bdi agents speak out in a logical computable language.
In de Velde, W. V. and Perram, J. W., editors, MAAMAW, volume 1038 of Lecture Notes
in Computer Science, pages 42–55. Springer.

Ricci, A., Denti, E., and Piunti, M. (2010a).
A platform for developing SOA/WS applications as open and heterogeneous multi-agent
systems.
Multiagent and Grid Systems International Journal (MAGS), Special Issue about “Agents,
Web Services and Ontologies: Integrated Methodologies” .
To Appear.

Ricci, A., Omicini, A., Viroli, M., Gardelli, L., and Oliva, E. (2007a).
Cognitive stigmergy: Towards a framework based on agents and artifacts.
In Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments for MultiAgent
Systems III, volume 4389 of LNAI, pages 124–140. Springer.

329

Bibliography XIII

Ricci, A., Piunti, M., Acay, L. D., Bordini, R., Hubner, J., and Dastani, M. (2008).
Integrating Artifact-Based Environments with Heterogeneous Agent-Programming
Platforms.
In Proceedings of AAMAS-08.

Ricci, A., Piunti, M., and Viroli, M. (2009a).
Externalisation and internalization: A new perspective on agent modularisation in
multi-agent system programming.
In Dastani, M., Fallah-Seghrouchni, A. E., Leite, J., and Torroni, P., editors, LADS,
volume 6039 of Lecture Notes in Computer Science, pages 35–54. Springer.

Ricci, A., Piunti, M., and Viroli, M. (2011).
Environment programming in multi-agent systems: an artifact-based perspective.
Autonomous Agents and Multi-Agent Systems, 23:158–192.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009b).
Environment programming in CArtAgO.
In Multi-Agent Programming: Languages,Platforms and Applications,Vol.2. Springer.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009c).
Environment programming in CArtAgO.
In Bordini, R. H., Dastani, M., Dix, J., and El Fallah-Seghrouchni, A., editors, Multi-Agent
Programming: Languages, Platforms and Applications, Vol. 2, pages 259–288. Springer
Berlin / Heidelberg.

330

Bibliography XIV

Ricci, A., Santi, A., and Piunti, M. (2010b).
Action and perception in multi-agent programming languages: From exogenous to
endogenous environments.
In In Proceedings of International Workshop on Programming Multi-Agent Systems
(ProMAS-8).

Ricci, A., Viroli, M., and Omicini, A. (2007b).
The A&A programming model & technology for developing agent environments in MAS.
In Dastani, M., El Fallah Seghrouchni, A., Ricci, A., and Winikoff, M., editors,
Programming Multi-Agent Systems, volume 4908 of LNAI, pages 91–109. Springer Berlin
/ Heidelberg.

Ricci, A., Viroli, M., and Omicini, A. (2007c).
CArtAgO: A framework for prototyping artifact-based environments in MAS.
In Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments for MultiAgent
Systems III, volume 4389 of LNAI, pages 67–86. Springer.
3rd International Workshop (E4MAS 2006), Hakodate, Japan, 8 May 2006. Selected
Revised and Invited Papers.

Ricordel, P. and Demazeau, Y. (2002).
VOLCANO: a vowels-oriented multi-agent platform.
In Dunin-Keplicz and Nawarecki, editors, Proceedings of the International Conference of
Central Eastern Europe on Multi-Agent Systems (CEEMAS’01), volume 2296 of LNAI,
pages 252–262. Springer Verlag.

331

Bibliography XV

Russell, S. and Norvig, P. (2003).
Artificial Intelligence, A Modern Approach (2nd ed.).
Prentice Hall.

Santi, A., Guidi, M., and Ricci, A. (2011).
Jaca-android: An agent-based platform for building smart mobile applications.
In Dastani, M., Fallah-Seghrouchni, A. E., Hübner, J., and Leite, J., editors, Languages,
Methodologies and Development Tools for Multi-agent systems, volume 6822 of LNAI.
Springer Verlag.

Shoham, Y. (1993).
Agent-oriented programming.
Artif. Intell., 60(1):51–92.

Sorici, A. (2011).
Agile governance in an ambient intelligence environment.
Master’s thesis, University Politehnica of Bucharest.

Stratulat, T., Ferber, J., and Tranier, J. (2009).
MASQ: towards an integral approach to interaction.
In AAMAS (2), pages 813–820.

Tambe, M. (1997).
Towards flexible teamwork.
Journal of Artificial Intelligence Research, 7:83–124.

332

Bibliography XVI

Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., and Zambonelli, F. (2007).
Infrastructures for the environment of multiagent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):49–60.

Weyns, D. and Holvoet, T. (2004).
A formal model for situated multi-agent systems.
Fundamenta Informaticae, 63(2-3):125–158.

Weyns, D. and Holvoet, T. (2007).
A reference architecture for situated multiagent systems.
In Environments for Multiagent Systems III, volume 4389 of LNCS, pages 1–40. Springer
Berlin / Heidelberg.

Weyns, D., Omicini, A., and Odell, J. J. (2007).
Environment as a first-class abstraction in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30.

Weyns, D. and Parunak, H. V. D., editors (2007).
Special Issue on Environments for Multi-Agent Systems, volume 14 (1) of Autonomous
Agents and Multi-Agent Systems. Springer Netherlands.

Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and Ferber, J. (2005).
Environments for multiagent systems: State-of-the-art and research challenges.
In Weyns, D., Parunak, H. V. D., Michel, F., Holvoet, T., and Ferber, J., editors,
Environment for Multi-Agent Systems, volume 3374, pages 1–47. Springer Berlin /
Heidelberg.

333

Bibliography XVII

Winikoff, M. (2005).
Jack intelligent agents: An industrial strength platform.
In [Bordini et al., 2005], pages 175–193.

Wooldridge, M. (2002).
An Introduction to Multi-Agent Systems.
John Wiley & Sons, Ltd.

Wooldridge, M. (2009).
An Introduction to MultiAgent Systems.
John Wiley and Sons, 2nd edition.

334

	Introduction
	Context & Requirements
	Multi-Agent Systems (Our view)
	Multi-Agent Oriented Programming (MAOP)
	MAOP Perspective: the JaCaMo Platform

	AOP: Agent Oriented Programming
	Jason
	Main Language Constructs: Beliefs, Goals, and Plans
	Other Language Features
	Comparison With Other Paradigms
	The Jason Platform
	Perspectives: Some Past and Future Projects

	EOP: Environment Oriented Programming
	Why Environment Programming in MAS
	Basic Level
	Advanced Level
	A&A and CArtAgO
	Conclusions and Wrap-up

	OOP: Organisation Oriented Programming
	Origins and Fundamentals
	Some OOP approaches
	Moise Organisation Modeling Language (OML)
	Moise Organisation Management Infrastructure (OMI)
	Moise Org. Embodiement Mechanisms for Cartago (E-O)
	Moise Org. Awareness Mechanisms in Jason (A-O)
	A more coarsed example
	Summary

	Conclusions

